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cutting edge outcomes for sport through our collective research pathways. 
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KEY ISSUES IN HIGH PERFORMANCE ANALYSIS IN SPORT 

 
Nick Brown

 

 
Performance Science and Innovation, Australian Institute of Sport 

  
 

Abstract 
 

In this presentation, I will share examples of where the AIS currently utilises mathematics and computers for 

High Performance Sport. I will go over a number of important questions in high performance analysis in sport, 

and discuss the needs that the Australian Institute of Sport and High Performance sporting have in relation to 

mathematics, statistics, computers and analytics. I will go through the array of data currently collected and its 

current use in sport. 

I will highlight key research possibilities with the AIS and potential co funding opportunities, and highlight the 

synergies needed to catalyse work amongst state bodies and sporting organisations. 
 

Keywords: AIS, High Performance 
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Abstract 

Traditional time-motion analysis of athlete physical output, or activity profile, during team-sport matches 

classifies movement according to pre-defined velocity thresholds. Comparing physical output using 

standardised thresholds is problematic given the differences in athlete chronological age, weight, playing 

position and standard. Limited research exists on the combination of velocity, acceleration and angular 

velocity movements completed by team-sport athletes. Athlete activity profiles were collected during one 

quarter of a junior-elite netball match, using radio-frequency (RF) tracking. Velocity, acceleration and angular 

velocity were calculated from raw, individual positional data. Each continuous variable was clustered using1d 

k-means and player movements were discretised with permutations of velocity, acceleration, and angular 

velocity, and assigned a unique alphabetic label. Continuous sequences of movement units were compared 

using the Levenshtein distance, and a hierarchical cluster analysis found groups of similar movement patterns. 

Common shared features in movement strings for each cluster were obtained by computing the longest 

common substring (LCS). The percentage of all movements represented by the LCS for each cluster was 

measured for various movement epoch sizes. Eighteen movement sequences were obtained over a 0.5 s epoch. 

Sprinting in a straight direction with neutral acceleration was a common feature for cluster 1. In contrast, over 

a 1.5 s epoch, sprinting and accelerating in a straight direction immediately followed by a sprint with neutral 

deceleration was a common feature for cluster 1. The most frequent combinations of velocity, acceleration and 

angular velocity movements were derived from empirical sequences of movement units. Future comparison 

across team-sport athlete playing position and standard, via the density of individual athlete movement 

features, could be achieved through this analysis and may assist with position-specific coaching and training 

strategies.   

 

Keywords: k-means, Minimum Description Length,Levenshtein distance, Netball 
 

 

1.INTRODUCTION 

Netball is a predominantly female team sport with a 

large participation base within Commonwealth 

countries(Steele & Chad, 1991a).Matches consist of 

15 minute quarters and are contested on a 30.5 m by 

15.25 m court divided into equal thirds. Players are 

assigned one of seven positions which restrict 

movement to specific on-court areas(Woolford & 

Angove, 1992). The substitution of players is only 

permitted during quarter and half-time breaks or if 

an injury time-out is called. The objective of the 

game is to score a goal through a ring that is 3.05 m 

above the ground. Netball athletes are not permitted 

to move more than one step with the ball and when 

in possession, must pass to a teammate within three 

seconds. 

Quantification of athlete physical movement, or 

activity profile, during matches is critical in 

understanding performance. Investigation into 

athlete match activity profiles can assist with sport-

specific preparation and conditioning(Di Salvo et al., 

2007; Mendez-Villanueva, Buchheit, Simpson, & 

Bourdon, 2013).(Di Salvo et al., 2007; Mendez-

Villanueva et al., 2013).Examination of netball 

match-play reveals a combination of short, high 

intensity movement interspersed with periods of low 

intensity activity, including walking and 

jogging(Steele & Chad, 1991a). Early studies on 

netball activity profile investigated sub-elite 

athletes(Davidson & Trewartha, 2008; Loughran & 

O'Donoghue, 1999; Steele & Chad, 1991a; Steele & 

Chad, 1991b) and were conducted before rule 

changes to the current length of a match, currently 
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15 minute quarters(Otago, 1983). Positions were 

either grouped(Steele & Chad, 1991a), into 

defender, midcourter or goaler, or combined entirely 

(Davidson & Trewartha, 2008)in the analysis. Only 

two studies (Fox, Spittle, Otago, & Saunders, 2013; 

Otago, 1983) have examined elite netball match 

activity profile according to individual playing 

position, using video analysis.  

Video analysis is commonly utilised in 

netball(Davidson & Trewartha, 2008; Fox et al., 

2013; Otago, 1983) however, estimating short, high-

intensity movement using inferences from visible 

movement types is error-prone. Micro-technology, 

including accelerometers(Boyd, Ball, & Aughey, 

2011)and global positioning systems or 

GPS(Jennings, Cormack, Coutts, Boyd, & Aughey, 

2010), allow quantification of athlete activity 

profiles according to physical capacity(Buchheit, 

Mendez-Villanueva, Simpson, & Bourdon, 2010), 

chronological age(Mendez-Villanueva et al., 2013), 

playing standard(Jennings, Cormack, Coutts, & 

Aughey, 2012) and position.(Mendez-Villanueva et 

al., 2013). Accelerometer load, as a measure of 

activity profile, can differentiate between netball 

playing standard at the sub-elite level (Cormack, 

Smith, Mooney, Young, & O'Brien, 2013) but 

remains to be investigated in an elite cohort. The 

validity and reliability of GPS to measure short 

high-intensity movements in confined 

spaces(Duffield, Reid, Baker, & Spratford, 2010) is 

likely insufficient for netball use (Duffield et al., 

2010). Elite netball matches also take place indoors, 

where GPS is rendered inoperable. The lack of 

research on netball match activity profile in 

contemporary athletes, according to position and 

playing standard, may be attributed to the types of 

technologies previously available for this analysis. 

Recognising the limitations of GPS and video-

analysis, radio-frequency (RF) tracking has been 

developed to monitor athlete activity both indoors 

and outdoors. The validity and reliability of the 

method considered, the Wireless ad-hoc System for 

Positioning or WASP (Hedley et al., 2010), has been 

established indoors(Sathyan, Shuttleworth, Hedley, 

& Davids, 2012). At present, RF technology is yet to 

be deployed in competitive netball matches to 

quantify match activity profile. 

Athlete activity profile is typically analysed using 

movement thresholds, including velocity 

bands(Aughey, 2010; Gabbett, Jenkins, & 

Abernethy, 2012) or arbitrary classifications(Fox et 

al., 2013). However, comparison between studies is 

difficult due to the multitude of inconsistent analysis 

techniques and movement definitions 

employed(Carling, 2013). Physical output expressed 

per minute of game time(Varley, Gabbett, & 

Aughey, 2013) or as a function of physiological 

capacity(Lovell & Abt, 2012) requires pre-

determined parameters to be fitted to data. Using 

pre-defined thresholds to compare across and 

between groups is problematic given athlete 

mass(Gabbett, 2002), playing standard(Jennings et 

al., 2012), position(Macutkiewicz & Sunderland, 

2011) and chronological age(Gastin, Fahrner, 

Meyer, Robinson, & Cook, 2013) may influence 

physical output. 

Data mining is a problem-solving methodology that 

sources a logical or mathematical description of 

patterns and regularities in a data set(Fayyad, 

Piatetsky-Shapiro, & Smyth, 1996).Whilst data 

mining techniques can determine the tactical 

patterns of play during elite volleyball 

matches(Jäger & Schöllhorn, 2007), determine 

weight transfer during the golf swing(Ball & Best, 

2007) and examine basketball match score 

outcome(Sampaio & Janeira, 2003), the analysis of 

athlete match activity profile, using data mining 

techniques, remains to be explored.  

Clustering mines data according to similarity/ 

dissimilarity and groups items regarding these 

criteria. Cluster analysis discriminated between high 

and low inter-personal coordination between soccer 

players(Morgan & Williams, 2012). Utilised in 

analysing the performance qualities of elite track 

cycling athletes to ascertain riders best suited to the 

omnium event(Ofoghi, Zeleznikow, Dwyer, & 

Macmahon, 2013), clustering may assist with 

informing athlete selection, training and strategic 

planning. Clustering, via self-organising maps 

(SOM),can provide an objective method to explain 

movement patterning during basketball 

shooting(Lamb, Bartlett, & Robins, 2010).However, 

applying a clustering approach to athlete match 

activity profile, remains to be explored. 

The aim of this study was to develop a movement 

sequencing technique that exploits the emergent 

movement characteristics of team-sport athletes. 

Specifically, to discover the most frequently 

recurring sequences and create insight into the 

temporal sequence of movement elements that are 

representative of netball athlete match activity 

profile.  

 

2.METHODS 

Activity profiles were collected from six female 

elite-junior netball athletes via RF tracking(Hedley 

et al., 2010) during a competitive international 

match. The clustering model was trained on five 

athletes and tested on the sixth, across the first 

quarter of play. The sampling rate of the RF system 
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is 1000Hz, divisible by the number of tracking units 

used during match play.  In our sample, 22 units 

were active (including players and substitutes from 

two teams), resulting in a sampling rate of 

approximately 45.5 Hz. Raw athlete position data 

were downloaded post-match via custom-built 

software (WhereIsBruce?, Australian Institute of 

Sport, Canberra, ACT, Australia) and exported into 

the R environment (R: A language and environment 

for statistical computing, Vienna, Austria). The 

elemental movement characteristics for each 

individual athlete over the first quarter (15 minutes 

in duration) were calculated in the following way: 

Velocity for each player were derived from the 

position data 

 

   
         

  
   (1) 

 

Acceleration was derived from velocity. 

 

    
       

  
   (2) 

 

The angular displacement (  ) was calculated from 

the dot product of consecutive movement vectors, a 

and b 

 

         
   

       
   (3) 

 

Next, angular velocity (rate of change in angular 

displacement) was calculated as follows. 

 

   
       

  
   (4) 

 

In each case, (for Equations 1, 2 and 4), t was equal 

to a time epoch that was varied between separate 

experimental trials where t = 0.5, 0.75, 1.0, 1.25 and 

1.50 seconds respectively. The observations for each 

of these movement characteristics were classified 

into groups of arbitrary n-size using a one-

dimensional k-means clustering algorithm (Wang & 

Song, 2011). Four velocity clusters (notionally 

Walk, Jog, Run, Sprint), three acceleration clusters 

(Accelerate, Neutral, Decelerate)and four angular 

velocity clusters (U-Turn, 90 degree turn, 45 degree 

turn, and Straight)were declared. Figure 1 illustrates 

the bandwidths represented by each cluster 

described above.  Figure 2 illustrates the relative 

frequency of each representation in movement 

classification. 

 

Figure 1. Classification bands representing 

movement clusters with exemplar data for a) 

Angular Velocity, b) Velocity, and c) Acceleration. 
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Figure 2. Relative frequency of clustered 

observations for Velocity, Acceleration and Angular 

Velocity. 

This approach produced 48 permutations (4 x 4 x 3), 

each of which was described as a unique 

combination of velocity, acceleration and angular 

velocity. A permuted identification code (upper and 

lower case alphabet letters)was assigned to each 

unique combination of velocity, acceleration and 

angular velocity. Table 1 lists the specific alphabetic 

character assigned to each permutation of velocity, 

acceleration and angular velocity.  We refer to these 

assignments as movement subunits. A frequency 

distribution of these movement subunits is displayed 

in Figure 3. 

The characteristics of any continuous movement are 

then represented by a temporal sequence of 

movement subunits. We further describe any 

sequence of movement subunits as a discrete 

movement sequence. Any movement sequence is 

temporally discrete from other movement sequences 

where the athlete does not move for the duration 

equal to the time epoch t.  In practice it is difficult to 

identify moments where athletes are motionless in 

competition, so we applied a movement threshold of 

0.5 m.s
-1

, to temporally discretise movement 

sequences. Additionally, any movement sequence 

must exceed the movement threshold for at least 1 

second (note that this will occur by default where 

t≥1.0 seconds). 

Table 1. Alphabetical characters for permuted 

movement subunits. 

 

Figure 3. Frequency distribution of movement 

subunits. 

Any period of player movement is now described as 

a set of movement sequences, where each subunit is 

characterised by an alphabetic character. Movement 

sequences were therefore represented by character 

strings of k length, where k is the number of 

composite subunits. It is also possible to quantify the 

similarity of movement sequences by comparing 

character strings using the Levenshtein 

distance(Levenshtein, 1966), which is a function of 

the minimum number of single-character edits 

(including insertions, deletions or substitutions) 

required to change one sequence into another.  

3.RESULTS 

The means of each of the four velocity clusters, for 

combined epochs, were 1.12, 0.67, 0.27 and 1.75 

m·s
-
¹(which we notionally referred to as running, 
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jogging, walking and sprinting respectively). It is 

important to note that these labels are arbitrary, and 

in practice is might be better to simply refer to them 

in such a manner as slow, slow-moderate, moderate, 

and fast. The means of the three acceleration clusters 

were 1.41, 0.05 and -1.25 m·s
-
¹.These values are 

more clearly defined as accelerating, neutral, and 

decelerating. The means of the three angular 

velocity clusters were149.68, 11.15, 42.72 and 88.88 

deg
.
s

-
¹. 

Movement sequences were generated using strings 

of character values.We then conducted a cluster 

analysis using the Ward method (Ward Jr, 1963). All 

movement strings in our dataset are therefore 

grouped proximally according to the Levenshtein 

distance.  A sequence analysis, using hierarchical 

clustering, revealed the most common clusters. A 

representative example, occurring with an epoch of 

0.5 s, is displayed as a dendrogram in Figure 4 

(attached).We identified 18 clusters using this 

method, and an algorithm to find the longest 

common substring (LCS) (Kuo & Cross, 1989) was 

utilised to find the longest string that is a substring 

of two or more strings, within each cluster. The two 

most common clusters include EEEEE and FEEEE, 

only one permuted subunit apart. Each cluster was 

iterated through to find the longest common 

substring, for each time epoch.The support value for 

each movement sequence was measured as the 

percentage of all movements represented by each 

example. These values were calculated for each of 

the epoch size.Thisdata is presented in Table 2.  

 

Table 2. The most frequently reoccurring 

movements, per cluster, as a function of epoch 

stamp and support. 

4. DISCUSSION 

This study is the first generative contribution to the 

problem of robust athlete activity-profiling that is 

independent of age, gender, sport-related constraints, 

and other features of physical capacity. It is also the 

first work, to our knowledge, to attempt the 

development of a movement sequencing technique 

that can create insight into the temporal sequence of 

movement elements in sport. Traditional analyses 

focus on quantifying athlete movement as a function 

of arbitrary or commercially developed thresholds.  

Using a one-dimensional k-means clustering 

algorithm, we were able to identify four velocity 

clusters, three acceleration clusters and four angular 

velocity clusters. By permuting elemental features of 

movement and characterising continuous athlete 

movement in the form of strings, the LCS sequence 

analysis approach revealed discrete and recurring 

combinations of athletic movement, representative 

of athlete activity typical in netball. In the 0.5 s 

epoch, running at a straight or 45° angle with neutral 

and acceleration components was a common feature 

for cluster 1. In contrast, the 1.5 s epoch showed 

sprinting and accelerating in a straight direction 

immediately followed by a sprint with deceleration 

was a common feature for cluster 1.  

Obtaining the most frequently recurring movements 

of an athlete or a number of athletes grouped 

according to position or playing standard, may have 

application for coaching and conditioning purposes. 

Knowledge of the movements performed, angle of 

attack and acceleration qualities may assist with 

planning sport-specific training and conditioning 

practices. Sprinting, accelerating and decelerating 

components were a common feature across a 1.5 s 

epoch for the athlete tested. This data may be used to 

target specific training qualities within a program. 

Further analysis could focus on movements 

performed before a successful or unsuccessful 

attempt at goal, which may assist with tactical 

planning. A movement sequencing analysis of 

athletes according to chronological age, playing 

standard and position should be investigated in 

future analyses.    

Eighteen clusters were obtained over a 0.5 s epoch 

in comparison to three clusters over a 1.5 s 

movement threshold, highlighting the importance of 

under-fitting versus over-fitting a model. The 

number of clusters to trim, or focus on, within a 

dendrogram is an important consideration when 

analysing athlete movement. For the purpose of this 

investigation (and the sport examined), we chose to 

trim at 25 clusters. Further investigation into epoch 

and trimming selection, dependent upon the sport 

considered, is warranted.  

5.CONCLUSION 

A movement sequencing technique was developed 

to analyse athlete activity profile. Using a one-

dimensional k-means clustering algorithm, four 
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velocity clusters, three acceleration clusters and four 

angular velocity clusters were identified. The LCS 

sequence analysis approach revealed discrete and 

recurring combinations of athletic movement, 

representative of athlete activity typical in netball. 

Eighteen clusters were obtained over a 0.5 s epoch, 

in contrast to three clusters over 1.5 s, highlighting 

the importance of under-fitting versus over-fitting a 

model. The three clusters over 1.5 s reveal a 

combination of sprinting, acceleration and 

deceleration qualities in a straight direction. 

Examining athlete activity profile using this 

movement sequencing technique, in contrast to 

traditional analyses, may assist with position specific 

training and conditioning practices.   
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Figure 4. Coloured dendrogram of hierarchical clustering.
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Abstract 

In this paper we investigate a variety of possible systems for the AFL finals if they were to move to a nine 

team final series. A number of issues arise that hamper traditional style systems - the largest hindrance the 

amount of time the final series needs to be played. Further, nine team finals do not lend themselves to an 

elegant tree like structure. In this paper, we bring together a number of concepts and thrash them through 

simulations. We consider the results of the systems through the variation of parameters such as scoring and 

home advantages. We also look at pool type approaches and tree structure models.  

 

Keywords: Finals, simulation, scheduling    
 

 

1. INTRODUCTION 

Prior to 1972 the most common finals system was a 

four team, three weeks structure. There were twelve 

teams in the VFL from 1944 until 1986 inclusive. 

From 1972 to 1990 inclusive a final five was used, 

expanding to a final six for three years to 1993. The 

Macintyre Final 8 was adopted in 1994 and used up 

to and including 1999. This matched 1
st
 and 8

th
 

against each other in Week 1, and 2
nd

 against 7
th

 etc. 

The two lowest ranked losers would be eliminated in 

the first week, meaning that individual matches’ 

results did not have predetermined consequences. 

Since the year 2000, a new final 8 system replaced 

the Macintyre Final 8. This was due to a number of 

deemed unsuitable scenarios in the preceding years. 

This is still in use in 2014. The current system will 

not be explained in this project, however the 

probabilities of teams winning the premiership will 

be referred to, as calculated by Lowe and Clarke 

(2000).  

With the inclusion of two new clubs in recent years 

(Gold Coast Suns, Western Sydney Giants) the AFL 

are again considering adopting a new system, in 

which there would be nine or ten teams. 

 

This paper focuses on nine team systems, in an 

attempt to improve the ‘fairness’ of the current 

system, which has issues inherent in the model. The 

criterion for measuring the fairness of any system 

was discussed by Monahan and Berger (1977) in 

regards to hockey, and this paper centres around 

three of their principles; 

 Maximise the probability that the highest ranked 

team wins, 

  Maximise the probability that the two highest 

ranking teams meet in the grand final, 

  The probability of a team finishing in any 

position or higher should be greater than for any 

lower ranked team (the expected final positions 

should mirror the original rankings). 

 We also have the added constraint of a four week 

window, and the desire to maximise the number of 

matches to increase revenue potential and fan 

participation, whilst avoiding meaningless 

encounters. In this paper, we shall divide the work 

into the nine and the ten team approaches. 

2. METHODS 

For the case when all teams considered have equal 

probability of winning any game, the premiership 

probabilities for each team can easily be calculated 

mathematically, and has been done so for a couple 

of systems. It is common practice to test systems 

primarily employing the equal probability model. 

The theory behind it being that a model should be 

advantageous to higher ranking teams even when all 

teams are considered equal. But to comprehensively 

test the robustness of any particular model, a range 

of probabilities should be explored. 
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Calculating Premiership probabilities becomes 

exponentially more difficult when adding 

complexities such as a superior team, or even home 

ground advantage. Therefore to calculate the 

premiership probabilities, models were created on 

Microsoft Excel and simulated with Simulation 4.0. 

Two methods were employed for simulation, the 

first is score based, which generates scores from a 

given normal distribution, the second binomial. The 

methods employed can be used to test the fairness of 

all types of sporting competitions. It is similar to a 

decision tree, in that at each node only one path can 

be chosen, hence could be used in that regard, or any 

where an optimal decision is needed to be 

calculated. 

2.1 Nine team system 

2.1.1. The Score System  

 

The purpose of the simulations is to incorporate the 

different strengths of the different teams to analyse 

the fairness of the system. For this reason, a number 

of different potential scores should be tested.  

A score was generated for every team and their 

opponent, for every match, based upon a chosen 

normal distribution for that team. For the majority of 

simulations the standard deviation of scores was 

held constant at 10 points. Some of the systems were 

simulated with a standard deviation of 20, with the 

results giving similar distributions as when the 

standard deviation was 10, although less amplified    

 

The first of two variables which determined the 

mean for any given simulations was an advantage 

given to the ‘home’ team (the team with a higher 

ranking), where the advantage is f = 0, 3, 6, 9, 12 or 

15 points. The second was based on ladder position; 

the first simulation has all teams equal with a mean 

of 100, in further simulations the mean scores of the 

lower placed teams were lowered by equal 

increments (Table 1). For example, in the second 

simulation where the increment is half a point, the 

top team keeps a mean of 100, but the second team 

has a mean of 99.5 points, the third team 99 points, 

and so on. In the third simulation the decreasing 

increment was one point, giving the second team a 

mean of 99, the third 98, and so on. The increments 

were g = 0, 0.5, 1, 1.5, 2, 2.5, therefore a total of 36 

score simulations were run for each model (f x g = 6 

x 6 = 36). 

  

 
Table1: Scores for the differing simulations based on 

ladder positions 

 

 

2.1.2. Binomial Probability System  

 

To properly test the fairness of the models, it is 

beneficial to produce an alternate method for 

simulating the matches. This second method devised 

was not able to be used on the Division models, as 

those models need a score in order for a percentage 

to be calculated (in the case of all teams winning one 

game, the team with the highest percentage will 

qualify).  

The binomial method involves picking the winner 

based on chance and is similar to the equal 

probability model. This variable ranged from 0.5 to 

0.75, in 0.05 increments, the advantage given to the 

‘home’ team (the team with a higher ranking), 

resulting in six binomial simulations for each model.  

 

2.2. Difference between Teams  

 

It is thought that when teams are closely ranked their 

abilities are evenly matched, creating a close, and 

therefore more exciting game. In an effort to 

measure the inherent excitement of a system, the 

average difference between the rankings of matched 

up teams was calculated by the simulations.  

 

2.3. Analysis  

 

Analysis was completed using MS Excel. In most 

cases results will be probability distributions for 

either winning the Premiership or reaching the 

Grand Final in graph form. While the actual 

percentages may help in deciphering advantage, it is 

important to realise that the shape of the distribution 

is the most important aspect. For this the reason, the 

axes of most graphs have been lightened. In these 

cases the x axis will be the teams from first to ninth, 

the y axis will be percentage with range of 0-100%.  

 

 

 

 



 

12 

2.4. Number of Trials  

 

To investigate the number of trials needed to 

produce accurate results, the heuristic probabilities 

for one of the systems were calculated and compared 

with simulation results to find a MAPE, the mean 

average percentage error. A MAPE of less than 

0.01% for 50,000 trials was achieved - which is an 

acceptable level of error for the simulations.  

 

 

3. RESULTS 

The existing systems are details below: 

 

Table 2:McIntyre System Likelihoods (Clarke 

(1996)) 

The revised McIntyre final system is covered in 

detail by Lowe and Clarke (2000). The obvious 

flaws are the top4/bottom4 disparity. It is argued by 

some that the RMF8 is too 'top heavy', in that only 

the top four sides can possibly win. Table 3 lists 

every Premier since the models’ inception, which 

seems to agree with that hypothesis – no team has 

won from outside the top four. The Minor Premier 

has only won 6 out of the 14 years, perhaps a result 

of the unfair nature of this model.  

 

Table 3: Existing system results (2000-13) 

We consider two broad systems – Divisions and Roll 

Overs.  

 

3.1 Divisions 

In a divisional system the qualifying teams are split 

into groups (divisions), whereby they play a round 

robin, usually playing one game against every other 

team in their division. Both the FIFA World Cup 

and the FIFA World Cup Finals are based on this 

model - the 32 World Cup Finals qualifying teams 

are divided into groups of four teams. After each 

team has played their three group members, the top 

two teams advance to the next round. It’s clear that 

the probability of any one team advancing past the 

round robin stage is heavily dependent on which 

other teams they are grouped with. For this reason 

three different groupings were simulated for this 

paper, Divisions A, B and C. 

 

There are obviously many more options for the 

groupings, so this paper focuses on holding Group B 

steady with second, fifth and eighth. Group A and C 

always includes first and third respectively, with 

fourth, sixth, seventh and ninth rotating. Holding 

first, second and third in groups A, B and C 

respectively, there are 90 combinations possible. 

Note that this system differs from the World Cup 

Finals model where there are four teams competing 

in each group. As opposed to the World Cup which 

has three divisional games, in a nine team system 

with three divisions there are two matches per team. 

The loss of a game translates to a much higher 

importance being placed on each game played. 

Using the World Cup example who have three 

divisional games, a team could lose their first match, 

win the next two and still be well placed to proceed 

to the next round. With only two matches, a loss in 

the first would significantly decrease the chances of 

proceeding past the round robin stage, especially for 

the lower ranked teams.  

Further to assigning teams into groups, there are 

many possible variations on any of these systems 

through the order of scheduling. Consider the 

hypothetical group of teams 1, 2, and 3 where the 

order of the matches is as follows; 1v2, 1v3, 2v3. If 

1 wins both matches the last is a dead rubber; its 

outcome is meaningless (apart from improving 

percentage in order to gain the wildcard entry). 

Therefore the best two teams should meet last, as 

both are expected to beat the third ranked team. This 

gives the matchups: 1v3, 2v3, 1v2 or 2v3, 1v3, 1v2. 

In either case a dead rubber would eventuate if team 
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3 won both its games. So to avoid a dead rubber, the 

winner of the first match must always play in the 

third match.  

There is also the problem of when to schedule the 

byes for each team. It is difficult to predict in which 

week any particular team would want to take their 

turn of sitting out. Would the top team want to take 

their bye in the second week to be fresh for the third 

week, or would they assume victory in these games 

and want to rest up in the third week for tougher 

opponents in later rounds? An interesting variation 

on these systems could be to give the top ranked 

team the choice of when to take their bye, either 

week 1 or week 2, but this is beyond the scope of 

this paper 

 

Figure 1: Desirable Shapes of the three division 

systems 

Adapting a divisional model for the AFL finals 

system would be tricky for continuous reasons – if it 

were decided to move to a ten team system, a whole 

new system would need to be introduced, instead of 

modifying the current model. Changing the system 

may be a big enough change, so to change the type 

of system may create an overload of confusion. One 

of the major drawbacks of all Division models is that 

it would be impossible to complete the series in four 

weeks, failing one of the supplementary goals.  

The variations available to this type of system make 

the possibilities for future research endless and 

exciting. As discussed, 90 combinations of divisions 

exists (holding 1, 2 & 3 constant), but realistically 

some of these combinations could be ruled out 

logically, possibly simplifying the experiment.  

3.2 Roll Over 

The Roll Over systems were originally created for 

this paper, named so because the matchups in the 

first week ‘roll down’ in ladder order. All Roll Over 

systems consist of four matches in Week 1 of the 

finals; one qualifying final, 2v3, and three 

elimination finals, 4v5, 6v7 and 8v9. First is 

awarded a first round bye in all systems. These 

systems were created with the primary purpose of 

decreasing premiership probabilities with decreasing 

ladder position.  

3.2.1. Roll Over A  

Figure 2 shows the structure map of Roll Over A. 

The Roll Overs all keep within the boundary of four 

weeks by allowing first place a massive advantage 

of a bye. The pathways shown on the map are colour 

coded – blue is for the winner, red for the loser. The 

second slot in match H is taken up by the highest 

ranked loser from the previous week, shown in a 

dotted red line.  

 

Figure 2 Roll Over A 

The top ranking team receives massive benefits for 

securing the Minor Premiership with a highly 

advantageous draw. Granted the only bye of the 

series in the first round, in Week 2 they play the 

lowest ranked winner from Week 1, giving them a 

high probability of reaching Week 3 with little 

physical strain. But this directs to a massive flaw in 

Roll A, and a match fixing paradise; first can get 

smashed in Week 2 and be guaranteed to play in 

Week Three. Although the high significance of 

winning a home final for the next round should be 

sufficient to distinguish this course of action, in 

round 3 it is possible for their opponent not to be the 

lowest ranking team left. This could be seen as 

unfair, but it is a result of both fulfilling the goal 

criteria of the top two teams playing in the Grand 

Final, and refraining from scheduling repeat matches 

(second and third already play in Week 1).  
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Table 4 Roll Over A: Percentage chance of team 

finishing in any position, EFP - Equal probability 

model  

 

 

Figure 3 P(GF) by points diff and mean diff. 

3.2.2 Roll Over B 

In an effort to decrease the gap in advantage first has 

over the rest of the field in Roll Over A, first will 

now face a higher ranking team than the winner of 

Match A. Roll Over B is basically the same as Roll 

Over A, the only difference being the winner of 

Match A now plays the winner of Match D, and after 

their bye, first plays the winner of Match C  

 

Figure 4 Roll Over B 

The probability tables for Roll Overs A, B and D 

reveal almost identical probabilities for the case of 

teams being considered equal. This is due to the 

systems changing slightly in order to suit particular 

teams, but when there is the same chance of beating 

third as eighth, these subtle differences will not be 

seen. They are included for completeness.  

 

 

Table 5 Roll Over B: Percentage chance of team 

finishing in any position, EFP - Equal probability 

model 

 

Figure 5 P(GF) by points diff and mean diff. 

The simulations surprisingly showed that switching 

the games had no effect on either the Premiership 

probabilities or the Grand Final Probabilities, as Roll 

B gave almost exactly the same results as Roll A. 

Investigation revealed the results differed by roughly 

0.04%.  

3.2.3 Roll Over D 

A big disadvantage in the previous Roll systems is 

that in Week 3, given favourites win, the matchups 

are 1v3 and 2v4. Roll D was designed with the goal 

of scheduling the more traditional matchups 1v4 and 

2v3 for week 3, which is the major difference in Roll 

D from its predecessors. It is an adaption of Roll A, 

rather than Roll B.  

 

Figure 6 Roll Over D 

Although this seems a fair system, it has some 

downfalls. In the unlikely event first lose their week 

2 match, they will play that same team the following 

week. One major advantage of this system is the 

likely event of a second versus third matchup in both 

week 1 and 3. In a season where the top team is a 

clear favourite for the premiership (although not 

often true, or currently true, it’s not an outrageous 
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assumption), having these two teams battle twice 

will be a good test to see who gets the honour of 

playing in that years’ Grand Final. It was not 

expected that the probability distributions for this 

system to be much better than previous systems, 

however as the matchups differ, simulations have 

been run.  

 

Table 6: Roll Over D: Percentage chance of team 

finishing in any position, EFP - Equal probability 

model 

 

Figure 7 P(GF) by points diff and mean diff. 

3.2.4. Roll Over C 

There are multiple reasons, some financial and fan 

based, for the AFL desiring to schedule more 

matches. In an effort to achieve this goal, Roll Over 

C (Figure 8) was designed. Featuring a record 

breaking 11 games, where seven of the nine teams 

are guaranteed to play in two finals (the loser of 

match D: 8v9 is eliminated and first has a first week 

bye).  

 

Figure 8 Roll Over C 

While the first week matchups were devised for 

close games, the second and third week matchups 

were designed to favour the higher ranking teams. 

Assuming the favourites win, the week 2 matchups 

are 2v8, 4v6, 3v5 and 1v7, obviously fairer to the 

higher placed teams. In a perfect world the matchups 

might be 3v6 and 4v5, but that would repeat a first 

week match. The winner of match A is given the 

lowest ranked team in an attempt to lessen the 

massive advantage of first’s first week bye. Again 

assuming the favourites win, the week 3 matchups 

are 1v4 and 2v3, as discussed previously, the most 

desired for that round.  

 

Table 7: Roll Over C Percentage chance of team 

finishing in any position, EFP - Equal probability 

model 

 

Figure 9 P(GF) by points diff and mean diff. 

An advantage of this system is that when all teams 

have an equal chance of winning each game, teams 

One through Seven each have an equal chance of 

winning the Grand Final. However, when advantage 

is introduced the results are similar to the previous 

models, but the advantage is more even over the 

field. This means that if there is a season where the 

finals qualifiers are somewhat close in ability (such 

as the current year), it would be a very exciting 

series, with excellent first week matches (like all 

Roll Overs), and a very fair system for higher 

ranking teams in later weeks. The extra game this 

system has over its predecessors, and extra three 

over the RMF8, would bring in a considerable 

amount of spectators for the AFL. 

 

 4. DISCUSSION 

To confirm the systems behave in the correct way, 

the advantage given to each team by the different 

systems was graphed individually, Figure 25 below. 

It seems RMF8 is a clear loser; second through fifth 

lose advantage, a definite drawback of the current 

system. Hardest done by is second, who gains little 

more advantage than the rest of the field. Roll Over 

C is arguably best. Although it gives first place a 
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decent advantage, it is lower than the others; the 

difference is picked up by some of the lower ranks 

teams (fourth to seventh), a sizable percentage 

increase in some cases.  

 

Table 8: The advantage given to each team. 

Difference between consecutive means = 0. The x-

axis is advantage given in the form of points (0-15), 

the y-axis still percentage (0-100)  

The following table displays a “×” if a certain goal 

was met. Added to the predetermined goals are 

“Difference” and “Games”. Difference is the 

average difference of the competing teams, Games is 

the amount of games played in the system.  

 

Table 9: Comparison of systems 

If considering only the factors listed in the above 

table, again Roll Over C is clearly the best. Not only 

is it the only system which fulfils all criterion, but 

the most games are played under its structure. It is 

interesting to note the current system had the best 

Difference, but all are close enough to negate 

significance.  

The mean and standard deviation of the AFL top 

nine teams in 2013 was calculated and is displayed 

in Table 10. These scores were used in a simulation 

for each of the systems shown if figure 10. 

 

Table 10: Home and away mean and standard 

deviation of the top AFL teams of 2013.  
 

 

Figure 10: Simulation of all Roll Overs and RMF8 

It was surprising that all the systems produced 

similar results. The most obvious thing to do with a 

prediction is compare it with the actual, and these 

models somewhat fail; Hawthorn beat Fremantle in 

the Grand Final, although Fremantle won the 

unwinnable game the week before in the Preliminary 

Final, beating arguably the best team of all time, 

Geelong, in Geelong. It is interesting to note the 

spike for North Melbourne, due mainly to their 

impressive away mean score. Even though they do 

have that high mean score, it often wasn’t enough to 

upset the top sides, proving the strength of the 

models.  

The expected position increases with increasing 

teams for all systems. RMF8 can again be seen to be 

the one which is least fair, due to the ever present 

‘equal for top four and bottom four’ nature of that 

system. It will be interesting to see these graphs 

when advantage is introduced, as they may tell a 

different story.  
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Figure 11: The EFP for the systems 

 

 

 

 

Figure 12: Mean Difference Comparisons 

For the final analysis it was decided to compare the 

chance of reaching the Grand Final under all the 

Roll Overs and the current system. Figure 28 has 

these probabilities for when there is no home ground 

advantage, but the mean for consecutive teams 

changes slightly. The clear best of the Roll Overs up 

until this point has been C, but the left graph along 

with the probability tables shows its major 

weakness; when all teams are considered equal, first 

to seventh have equal chance of playing in the final. 

However, with slight advantage increase it improves 

dramatically. Again the worst seems to be RMF8, 

whose massive drop from fourth to fifth is 

mistakably prevalent, even in the rightmost graph. 

 

5. CONCLUSION 

All systems tested met most of the criteria and were 

shown to be fairer than the current system. Of the 

original systems Roll C was shown in many cases to 

have a fairer spread of winners while still giving first 

its due advantage, but has inherent flaws. The 

systems each have considerable benefits and 

drawbacks, the best being a matter of opinion. 

Although some unfavourable events may occur, to 

achieve the desired outcomes there may always be 

some unfairness inherent to the system. The division 

method is an exciting idea which deserves further 

study.  
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Abstract 

The increase in recent seasons in interchange rotations in the AFL has had a substantial impact on various 

facets of the game. These include the speed of general play, player exertion and intensity, and the incidence of 

collision and non-collision injuries. The aim of this research was to examine the longitudinal impact of one or 

more players being injured (to the extent that they are unable to return to the field) on scoring patterns, 

interchange rotations, and likelihood of either team winning the match. Differences in each of these outcome 

variables were analysed for matches where no injuries occurred, with these matches being compared with 

matches where one, two, and three injuries were sustained by either team. Results were compared across the 

2007 to 2010 AFL seasons and indicated a substantial negative impact on a team’s ability to score and rotate 

players on and off the interchange bench when at least one injury was sustained. The net effect was a decrease 

in the likelihood a team would win a match. 

 

Keywords: AFL, injury, interchange rotation, injury effects 
 

 

1.INTRODUCTION 

Theincrease in recent seasons in interchange 

rotations in the AFL has had a substantial impact on 

various facets of the game. These include the speed 

of general play, player exertion and intensity, and 

the incidence of collision and non-collision injuries. 

The elevation in player injuries has been projected to 

further increase over the next five to ten years. 

Based on research conducted by the AFL and 

research associates, The AFL Laws of the Game 

Committee proposed a series of changes to the 

interchange system in order to curb the increase in 

player injuries. Suggested amendments included: 

 

 Retaining four players on the interchange 

bench, and capping interchange rotations at 

80 per team; 

 Reducing the number of players on the 

interchange bench to three, and introducing 

one substitute player per team; 

 Reducing the number of players on the 

interchange bench to two, and introducing 

two substitute players per team. 

 

One consequence of the increase in general player 

injuries is the heightened incidence of player injuries 

during a match, and the subsequent limitations 

placed on teams who are unable to rotate all 22 

players on and off the ground. To enhance our 

understanding of the impact of player injuries on the 

outcome of games played in the AFL, further 

analysis is required. Specifically, limited data is 

available on the impact of one or more players being 

unable to return to the field after sustaining an injury 

during a game. In effect, it is possible that the 

likelihood of a team winning a match following a 

player being injured is reduced, and this may be 

compounded by a team sustaining multiple injuries 

during a game. 

 

In collaboration with the AFL, the RMIT University 

Sports Statistics Research Group examined the 

impact of player injuries on match outcome AFL 

matches. This was achieved by incorporating several 

variables into a detailed analysis. These variables 

included: 

 

 In-play injury incidents for AFL matches 

played over the 2007 to 2010 seasons; 
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 In-play scoring patterns for teams prior to 

and following an injury; 

 Number of interchange rotations prior to 

and following an injury; 

 Win percentage of teams who sustain one 

or multiple injuries during a match. 

 

The aim of this analysis was to examine the 

longitudinal impact of one or more players being 

injured (to the extent that they are unable to return to 

the field) on scoring patterns, interchange rotations, 

and likelihood of either team winning the match. 

 

Examination of the effect of player injuries will be 

analysed at multiple levels, including the impact of 

player injury on points scored and points conceded, 

and the association between the margin at the time 

of the injury and the final margin at the end of the 

game. Finally, the effect of injury on interchange 

rotations will be reviewed, with respect to the team 

who sustained an injury as well as the opposition 

team who maintained a full complement of players 

to rotate for the remainder of the match. 

 

2.METHODS 

Multi-Phase Analysis 

 

In order to address the aforementioned research 

aims, a multi-phase analysis was conducted. 

Analyses were completed on the association 

between single and multiple in-game injuries and: 

 

 Scoring patterns; 

 Interchange rotations; 

 Points conceded; 

 Differential scoring; 

 Likelihood of winning the match. 

 

Each of these analyses was conducted using 

statistics provided by Champion Data. This data 

incorporated all AFL matches played during the 

2007, 2008, 2009, and 2010 seasons. Variables that 

were utilised for all games regardless of whether an 

injury was sustained included: 

 

 Season; 

 Round; 

 Match code; 

 Home and away team; 

 Home and away team final score; 

 Home and away team interchange rotations; 

 Quarter length (seconds); 

 Scores at each quarter break. 

 

Additional variables that were incorporated for 

matches where at least one injury occurred: 

 

 Name of the player who was injured; 

 Quarter the player was injured; 

 Time in the quarter the player was injured; 

 Team scores at the time of injury; 

 Team interchange rotations at the time of 

injury. 

 

Research Constraints 

 

Whilst all matches played from 2007 to 2010 were 

incorporated in the analysis, a constraint was placed 

on matches where multiple injuries occurred. These 

matches could be incorporated when only one team 

had sustained injuries (e.g., 2 injuries to the home 

team, and no injuries to the away team). This 

constraint was placed on the analysis given that 

findings would become considerably more 

ambiguous had games where injuries occurred for 

both teams been incorporated (e.g., one injury each 

or two injuries to one team and one injury to the 

other). In cases where injuries occur for both teams, 

each and every match situation is unique, given that 

injuries occur for each team at different times. For 

example, the home team may sustain an injury in the 

first quarter, whilst the away team sustains two 

injuries in the third quarter. Endeavouring to 

establish which team was more disadvantaged would 

require considerable speculation, and thus was 

removed from the analysis. 

 

3.RESULTS 

Points Scored 

 

In the first phase of this analysis, an examination of 

the effect of injuries is undertaken with respect to 

scoring. Figure 1 presents the scoring trends of all 

AFL teams for the 2007 to  2010 seasons for 

matches where no players were injured, and either 

one, two or three players were injured over the 

course of the game. Injuries only refer to those 

players who left the ground and were unable to 

return for the remainder of the match. 
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Figure 1. Scoring trends for the 2007-2010 AFL 

seasons for teams with no injuries and one, two and 

three injuries. 

 

Results in Figure 1 indicate that injuries resulted in a 

general decline in a team’s ability to score when 

players were injured. This was particularly the case 

when two or three players were injured in the one 

game. What is most striking is the steep reduction in 

scoring potential when two or three injuries occurred 

in the one match during the 2010 season. In effect, 

during 2010, two or three injuries resulted in a 

scoring rate of 5 and 16 points lower than equivalent 

matches where no injuries had occurred. The 

reduction in scoring potential when injuries occurred 

in 2010 may be related to the increase in interchange 

rotations. Specifically, the reduced potential to rotate 

players following an injury may be associated with 

the decline in scoring following multiple injuries. 

 

Findings from Figure 1 can be further interpreted 

based on statistics presented in Table 1. This table 

provides data on the change in scoring potential 

following one, two or three injuries when compared 

with scoring potential when all 22 players are 

available, that is, 18 players on the field, and four on 

the interchange bench. 

 

Season 

Quarterly Scoring 

Rate When No 

Injury Was 

Sustained 

Quarterly Scoring Rate When Compared With Matches Where 

No Injury Was Sustained 

One Injury Two Injuries Three Injuries 

2007 23.95 +0.1 -2.35 -6.95 

2008 24.06 -1.81 +3.37 -4.26 

2009 22.14 +0.02 +0.16 -4.89 

2010 22.21 -0.98 -5.13 -16.11 

2007 – 2010 23.27 -0.92 -1.82 -9.54 

Table 1. Tabulated scoring trends for the 2007-2010 AFL seasons comparing scoring rates of teams with no 

injuries with teams with one, two and three injuries. 

 

Table 1 indicates that in 2010, having one injury 

resulted in scoring 1 point less per quarter, two 

injuries resulted in scoring 5 points less per quarter, 

and three injuries resulted in scoring 16 points less 

per quarter.In 2007 and 2009, having one injury did 

not influence scoring potential of teams when 

compared with teams who had a full complement of 

players available.In 2007, 2008, and 2009, having 

three injuries resulted in reduced scoring potential of 

between four and seven points per quarter, however 

in 2010, this figure increased to over 16 points per 

quarter, which is the equivalent to over five goals 

per half of football. 

 

When examining all data from 2007 to 2010 

combined, having one injury resulted in scoring 1 

point less per quarter, two injuries resulted in 2 

points less per quarter, and three injuries resulted in 

9.5 points less per quarter. 

 

Interchange Rotations 

 

It can be hypothesised that the greatest effect of in-

game injuries will be on interchange rotations from 

that point in the match onwards. This has been a 

particularly salient issue in seasons considered, 

given the rapid increase in player rotations during a 

game at the time. 

 

Analysis of the average interchange rotations for 

five minute periods throughout a match in 2010 

sheds light on this increase. During 2010, teams 

averaged approximately five interchange rotations 

for every five minute period in a match, which 

equates to one interchange rotation per minute. 

Based on theinterchange resources that are required 
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to maintain this level of rotations, it can be predicted 

that in-game injuries will have a substantial effect on 

the ability of teams to rotate their players at the 

frequency that has been evident during 2010. 

 

In this analysis, the frequency of player rotations 

was examined for the 2007 to 2010 seasons. 

Specifically, average rotations were computed for 

teams who had sustained no injuries, and those 

teams who had sustained one, two or three injuries, 

refer to Figure 2. 

 

 

Figure 2. Interchange rotation rates for the 2007-

2010 AFL Seasons for teams with no injuries and 

one, two and three injuries. 

 

As can be observed in this figure, player injuries had 

a substantial impact on the capacity of teams to 

rotate their players during every season over the four 

seasons considered.  The steepest decline in 

interchange rotations was evident in 2010, when a 

team sustained a single injury. Two injuries was 

associated with between five and ten less rotations 

per quarter across each of the four seasons, whilst 

three injuries was associated with a steep decline in 

the capacity to rotate, and this was particularly 

evident in 2008 and 2010. 

 

From this analysis, it can be identified thatthe 

rotation rates that were evident in 2010 are not 

tenable when a team suffers a single injury. This was 

not the case in 2007, as results in Figure 2 indicate 

that interchange rotations were consistent regardless 

of whether a team had no injuries or one injury 

during the match. An alternate depiction of the data 

in Figure 2 is presented in Table 3. 

 

Season 

Quarterly Rotation 

Rate When No 

Injury Was 

Sustained 

Quarterly Rotation Rate When Compared With Matches Where 

No Injury Was Sustained 

One Injury Two Injuries Three Injuries 

2007 15.16 -0.49 -4.71 -10.66 

2008 20.54 -6.83 -6.14 -15.44 

2009 23.39 -6.18 -8.54 -12.74 

2010 29.21 -13.44 -9.95 -17.21 

2007 – 2010 21.47 -5.89 -6.33 -13.04 

Table 3. Tabulated rotation rates for the 2007-2010 AFL seasons comparing interchange rotations of teams 

with no injuries with teams with one, two and three injuries. 

 

Table 3 indicates that in 2010, having one injury 

resulted in an average of 14 less interchangerotations 

per quarter, two injuries resulted in 11 less 

interchange rotations per quarter, and three injuries 

resulted in 18 less interchange rotations per 

quarter.The impediment that one injury placed on 

interchange rotations in 2010 is double that of 2008 

and 2009, and 13 times that observed in 2007. This 

finding indicates that under the then current 

circumstances, interchange rotation rates recorded in 

2010 are not sustainable when less than four places 

are available on the interchange bench. 

 

 

 

Overall, between 2007 and 2010, having one injury 

resulted in an average of 6 less interchange rotations 

per quarter, two injuries resulted in 6.5 less 

interchange rotations per quarter, and three injuries 

resulted in 13 less interchange rotations. 

 

Points Conceded 

 

Points conceded refers to the number of points 

scored by the opposition, which for the purposes of 

this research, refers to the team who does not have 

any injured players. Again, the number of points 

scored is examined with respect to quarter of 

football, and thus an analysis of the number of 
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points conceded per quarter was reviewed when a 

team had one, two, or three injuries within the one 

game. Figure 3 presents the average number of 

points conceded in 30 minutes of football when 

teams had no injuries, or one, two or three injuries. 

 

 
Figure 3. Average points conceded for the 2007-

2010 AFL seasons for teams with no injuries and 

one, two and three injuries. 

 

Sustaining one injury had only minor detrimental 

effects on points conceded during 2007 and 2009, 

and of note, teams conceded slightly fewer points 

after sustaining one injury in 2007 and 2010. This 

finding must be interpreted in the context of the 

points scored analysis undertaken in the previous 

section. In effect, despite a mild decrease in points 

conceded in 2010, teams were scoring at a slower 

rate after sustaining an injury in this season, thus the 

net result remains negative for teams who sustain an 

injury. 

 

Sustaining two injuries resulted in teams conceding 

more points during 2008, 2009, and 2010. Whilst 

this was not the case in 2007, teams who sustained 

three injuries during this season conceded an 

average of 43 points per 30 minutes of football when 

only one player was available on the interchange 

bench. 

 

The general trend in 2010 was that injuries did not 

adversely affect the number points conceded for the 

remainder of the match, however as stated, teams 

were scoring fewer points after sustaining injuries, 

and thus the net result remains negative. 

 

Table 4 presents data on the average points 

conceded after sustaining one, two or three injuries, 

when compared with teams who did not sustain any 

injuries for the duration of matches. 

 

Season 

Quarterly Points 

Conceded When 

No Injury Was 

Sustained 

Quarterly Points Conceded When Compared With Matches 

Where No Injury Was Sustained 

One Injury Two Injuries Three Injuries 

2007 23.95 +0.16 -3.52 +19.95 

2008 24.06 +2.08 +4.04 +2.64 

2009 22.14 +0.95 +4.51 +10.56 

2010 22.21 -1.26 +1.61 +0.74 

2007 – 2010 23.95 +0.24 +1.30 +8.22 

Table 4. Tabulated points conceded for the 2007-2010 AFL seasons comparing points conceded for teams with 

no injuries and teams with one, two and three injuries. 

 

Results in Table 4 indicate sustaining one injury had 

a minor impact on points conceded, with points 

conceded fluctuating by between 1 and 2 points per 

quarterduring 2007, 2009, and 2010 after one injury 

was sustained.Sustaining two injuries had the 

greatest effect on points conceded over the past three 

seasons, particularly during 2008 and 2009, with 

four additional points being conceded for every 30 

minutes of football. 

 

Over the past four seasons, when three injuries were 

sustained, AFL teams conceded considerably more 

points when compared with teams who had a full 

complement of players to rotate through the 

interchange bench. This finding was most 

salientduring 2007 and 2009. It should be noted that 

the variability in points conceded following three 

injuries may be the result of sample size, given that 

teams infrequently sustain three injuries in the one 

match. 

 

When considering all four seasons combined, results 

indicated that having one injury was associated with 

conceding the same number of points per quarter, 

two injuries resulted in conceding 1 point more per 

quarter, three injuries resulted in conceding 7 points 

more per quarter, and four injuries resulted in 
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conceding 16 points more per quarter. It should be 

noted that four injuries occurred on one occasion 

only. 

 

Overall Scoring Differential 

 

Based on the analysis of scoring rate and points 

conceded, a final analysis was conducted to examine 

the overall scoring differential when teams sustained 

one, two or three injuries. Scoring differential can be 

calculated by subtracting points conceded from 

points scored, and thus a positive score indicates that 

the team with injuries has scored more than their 

opponent whilst a negative score indicates that the 

team with injuries has scored less than their 

opponent. Figure 4 displays the average score 

differential for matches where one, two or three 

injuries were sustained. 

 

 
Figure 4. Scoring differential for the 2007-2010 

AFL seasons for teams with one, two and three 

injuries. 

 

Results displayed in Figure 4 indicate that teams 

who sustain one injury maintained an overall 

scoringdifferential of approximately zero in 2007, 

2009, and 2010, however teams conceded four 

points more than they scored each quarter during 

2008. 

 

In 2009 and 2010, sustaining two injuries resulted in 

a net loss of between 4 and 5 points each quarter 

respectively, which equates to a total of 16 to 20 

points of the course of the game. When teams 

sustained three injuries in 2009 and 2010, the net 

score differential was between 11 and 15 points, thus 

teams were much more likely to concede 

considerably more points than were scored for each 

quarter that was played with three injured players on 

the interchange bench. Whether this finding has 

resulted from the increase in player rotations and 

subsequent elevations in game speed and intensity 

warrants further research. 

 

 
Figure 5. Average scoring differential for the 2007-

2010 AFL seasons for injuries sustained in the first, 

second, third and fourth quarters. 

 

Figure 5 displays the average score differential for 

injuries sustained in the first, second, third and 

fourth quarters. This analysis examines the 

difference between points for and score concededfor 

teams who sustained an injury in the 2007, 2008, 

2009, or 2010 seasons.Results in Figure 5 indicate 

that the scoring pattern of teams (relative to their 

opposition’s scoring) is not impeded by an injury 

that occurs in the first or second quarters. However, 

when an injury occurs in the third quarter, teams 

have a 2 point deficit (on average) for each quarter 

for the remainder of the match. In addition, when an 

injury occurs in the fourth quarter, teams on average, 

have a 10 point scoring differential, which indicates 

that they concede 10 points more than they score if 

the injury is sustained at the beginning of the final 

quarter. If the injury is sustained at the 15 minute 

mark of the final, the results in Figure 5 suggest that 

this will result in a five point deficit by the end of 

the match. 

 

Likelihood of Winning the Match 

 

In addition to the examination of the effect that in-

game injuries have on scoring patterns, an aim of 

this analysis was to examine the ability of teams to 

win after sustaining one, two or three injuries in a 

match. Table 5 presents the percentage of matches 

won by teams who had one, two or three injuries 

during a match in the 2007 to 2010 AFL seasons. 
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Season 

Percentage of Matches Won By Team 

with Players Injured 

One 

Injury 

Two 

Injuries 

Three 

Injuries 

2007 49.0% 62.5% -
a 

2008 47.8% 37.5% -
a
 

2009 45.5% 30.0% -
a
 

2010 46.4% 41.7% -
a
 

2007–2010 46.9% 42.1% 25.0% 
a
 Insufficient data to compute a win percentage. 

Table 5. Percentage of matches won by teams who 

had one, two or three injuries during a match in the 

2007-2010 AFL seasons. 

 

Results in Table 5 indicate that when a single injury 

was sustained during the match, the likelihood of 

winning during the 2007 to 2010 seasons was less 

than 50%, and at times as low as 45%. This value 

was lowest during the 2009 and 2010 seasons 

respectively, which may be indicative of the increase 

in player rotations evident in these two seasons. 

Findings for 2010 provide furtherevidence of this 

contention, given that teams who sustained two 

injuries won only 41.7% of matches, whilst no team 

won a match after sustaining three injuries during a 

match in 2010. With the exception of the 2007 

season, sustaining two injuries within a match 

resulted in a considerable decrease in win 

percentage, with teams only winning 30% of 

matches during 2009 when two injuries were 

sustained. 

 

 
Figure 6. Percentage of matches won by teams who 

had one, two or three injuries during a match in the 

2007-2010 AFL seasons. 

 

Figure 6 presents data on all four seasons from 2007 

to 2010 combined. A combined analysis was 

undertaken due to the small sample size of matches 

where three injuries occurred. This analysis provides 

some insight into the effect of multiple injuries on 

the outcome of matches. When considering all four 

seasons combined, between 2007 and 2010, teams 

with one injury won 47% of their matches, teams 

with two injuries won 42%, teams with three injuries 

won 25%, and teams with four injuries did not win a 

match between 2007 and 2010 when their opposition 

team had 22 available players throughout the match. 

An examination of the likelihood of winning a 

match when an injury was sustained in the first, 

second, third or fourth quarter was also undertaken. 

This analysis incorporated those matches where only 

one player was injured over the course of the game. 

Findings revealed only minor variations in the 

likelihood of winning, irrespective of the quarter of 

the injury, or the season that was analysed (e.g., 

2007, 2008, 2009, or, 2010). When considering all 

four seasons combined, the likelihood of winning 

was lowest (38%) when an injury was sustained in 

the third quarter. 

 

4. DISCUSSION 

Analysis showed sustaining multiple injuries 

resulted in a general decline in a team’s ability to 

score when compared with teams who had not 

sustained injuries.In 2010, having one injury 

resulted in scoring 1 point less per quarter, two 

injuries resulted in scoring 5 points less per quarter, 

and three injuries resulted in scoring 16 points less 

per quarter. The effects of injuries in 2010 were 

markedly greater than in previous seasons. 

 

Over the past four seasons, player injuries have had 

a substantial impact on the capacity of teams to 

rotate their players.  The steepest decline in 

interchange rotations was evident during 2010.The 

impediment that one injury placed on interchange 

rotations in 2010 is double that of 2008 and 2009, 

and 13 times that observed in 2007. 

 

Sustaining one injury had only minor detrimental 

effects on points conceded during 2007 and 2009, 

and of note, teams conceded slightly less points after 

sustaining one injury in 2007 and 2010.Sustaining 

two injuries had the greatest effect on points 

conceded over the past three seasons, particularly 

during 2008 and 2009, with four additional points 

being conceded for every 30 minutes of football.The 

general trend in 2010 was that injuries did not 

adversely affect the number of points conceded for 

the remainder of the match, however as stated, teams 

were scoring fewer points after sustaining injuries, 

and thus the net result remained negative. 
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In 2009 and 2010, sustaining two injuries resulted in 

a net loss of between 4 and 5 points each quarter 

respectively, which equates to a total of 16 to 20 

points over the course of the game.The scoring 

pattern of teams is not impeded by an injury that 

occurs in the first or second quarters. However, 

when an injury occurs in the third quarter, teams 

have a 2 point deficit (on average) for each quarter 

for the remainder of the match. In addition, when an 

injury occurs in the fourth quarter, teams on average, 

have a 10 point deficit, which in practice, indicates 

that they concede ten points more than they score if 

the injury is sustained at the beginning of the final 

quarter. 

 

When a single injury was sustained during the 

match, the likelihood of winning during the 2007 to 

2010 seasons was less than 50%, and at times as low 

as 45%. This value was lowest during the 2009 and 

2010 seasons respectively, which may be indicative 

of the increase in player rotations that has been 

evident in these two seasons. 

 

The results of these analyses do not counteract 

intuition, that is, it is expected sustaining injuries 

would be detrimental to team performance, and this 

research bears evidence in favour of this contention. 

It is interesting however that the effect worsens, in 

scoring terms, the later in the match the injury 

occurs. Such a finding suggests teams are able to 

better manage injuries early in a match by perhaps 

modifying their game plan. Also of interest is the 

finding that detrimental effects impact on points 

conceded more than points scored. This suggests the 

defensive component of a team’s game plan is 

hindered to a greater degree by injury than the 

offensive component. 

 

Limitations 

 

Several limitations exist in the current analysis. 

Firstly, it was only possible to examine matches 

where only one team sustained one or more injuries. 

Whilst an analysis of matches where both teams 

sustained injuries may yield some fruitful 

information, the inclusion of this data would likely 

increase ambiguity in the current findings. 

 

A second limitation that should be noted is the 

limited sample size that was available for certain 

injury categories, particularly matches where a team 

had sustained three or four injuries. Given that teams 

seldom suffer three or four injuries in the one match, 

the sample size for these categories was limited. In 

each analysis, every effort was made to avoid 

misinterpreting the data, and therefore, an analysis 

was not undertaken when an insufficient sample size 

was available. 

 

5.CONCLUSION 

Based on the findings of this analysis, it can be 

concluded that sustaining one or more injuries 

during a match has a substantial impact on a team’s 

ability to score and rotate players on and off the 

interchange bench. This was particularly evident in 

2010, with a marked decrease in both scoring 

potential and player rotations when injuries were 

sustained. Of note, single injuries did not increase 

the number of points conceded, however multiple 

injuries resulted in a slightly higher number of 

points being conceded each quarter. Overall, 

sustaining injuries impacts on the likelihood of 

winning the match, with two injuries resulting in a 

win percentage of approximately 40%. 

 

Based on these findings, it is evident that injuries 

have had a greater impact on scoring potential and 

player rotations during 2010 when compared with 

previous seasons. Whilst a progressive increase in 

the effect of injuries on scoring patterns and match 

outcome is evident, it is clear that interchange 

rotations reached a critical mass in 2010, and thus 

corresponding rotation rates cannot sustain a single 

injury during the match. 
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Abstract 
 

The simplest, and most common, measures of individual performance in limited overs cricket are the batting and 

bowling average.  Along with strike rates and economy rates, which are equally easy to construct, they form the 

traditional framework around which a cricketer’s assessment is based.  However, it is well known that these 

measures, while easy to calculate, can be misleading with regard to the true value of an individual to his team’s 

success or failure.  In this paper, we extend the work of Lewis (2005) to develop a measure of the actual relative 

contribution of each batsman and bowler to the final scores in a limited overs match.  By so doing, we can 

develop better metrics of performance which avoid many of the pitfalls of the standard measures.   Based on a 

new performance metric, the adjusted net runs attributable (aNRA), we rank the best performers in both batting 

and bowling overthe Indian Premier League seasons from 2010 to 2013 and examine the relationship between 

aNRA and the official Man of the Match (MotM) awards.  In addition, we use the new metric to assess the 

outcomes of the 2014 player auction, wherein teams bid for the services of the players for upcoming seasons. 
 

 

Keywords: Duckworth-Lewis method; Performance metrics; Player rankings  
 

 

1. INTRODUCTION 
 

Assessing individual performers in team sporting 

arenas is a fundamental activity of both fans and 

administrators alike.  Typically such assessments are 

largely subjective or else based on objective 

measurements which owe their prominence to their 

ready availability and simplicity of calculation, but 

may not be the most directly applicable measures 

with respect to the most important aspect of an 

individual's performance; namely, their contribution 

to the success of the team.  In the case of cricketers, 

as for many other individual sportspersons in team 

sports, the most common and traditional objective 

measures of performance, such as averages and 

aggregates, strike rates and economy, are used largely 

due to their ease of construction and ubiquitousness.  

However, these statistics do not directly measure a 

player's contribution to the most important aspect of a 

match, its outcome.  Players may accumulate 

impressive statistical performances in lost causes or 

easy victories, while others may have their match-

changing, though not voluminous in terms of the 

usual measures, performances under-valued.  As in 

anything, the output of a participant needs to be 

judged in proper context. 
 

A limited overs cricket match proceeds in two 

innings, each continuing until either the completion 

of a prescribed number of deliveries, the loss of 10 

wickets or, in the case of the second innings, the 

game is won.  The first innings sees one team score 

as many runs as they can, using their available 

resources (i.e., deliveries and wickets). Then, in the 

second innings the other team attempts to score more 

than their opponent. As in many sporting contests, it 

is often the case that a limited overs cricket match's 

outcome is clear well before it concludes. For a 

cricketer, then, when runs are scored or wickets 

taken, and the circumstances of the match under 

which these events occur, are at least as important as 

their mere number in assessing their contributions to 

the team cause.  Indeed, it has long been accepted 

that the simple, and most common, measures of 

performance, the batting and bowling averages, are 

often a misleading indicator of a player’s true ability 

and worth.  Perhaps more insidiously, use of simple 

averages as a key performance indicator may actually 

encourage players to undertake strategies which 

prioritise personal statistics over team goals.  As one 

example, a batsman may choose to accumulate runs 

slowly (and safely) to pad his personal tally at the 

expense of under-utilising the team’s finite available 

resources and thus not leaving his team enough to 

actually win the match.  Further, the importance of 

“not outs” in batting average calculations provides 

strong incentive for batters to preserve their own 

wicket at the expense of seeking risky runs which 

might more directly benefit the team cause. 
 

A range of researchers have attempted to better 

account for the true performance of cricketers by 

using statistical measures beyond the ones in most 

common usage; namely batting averages and strike 

rates (runs per delivery) for batsmen and bowling 
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averages and economy rates (runs conceded per over 

bowled) for bowlers.  For example, Croucher (2000) 

introduced the “batting index” metric, which is the 

product of a batsman’s average and strike rate.   

Alternatively, the average plus strike rate (per 100 

deliveries), or APS, is becoming a frequently quoted 

measure of batsman’s capabilities, particularly in the 

shortest version of the game, Twenty20 cricket. 

Other approaches include detailed multivariate 

analysis of scorecards (e.g.,Barr and Kantor, 2004).  

These approaches, though,use only aggregate match 

information (i.e., how many runs were scored or 

wickets taken, but not when during the match they 

occurred). Indeed, the official International Cricket 

Council (ICC)player ranking methodology, while 

calculated using “a sophisticated moving 

average…based on various circumstances of the 

match,”(http://www.reliancemobileiccrankings.com/)

, uses solely information available on a match 

scorecard.  While such approaches have the benefit 

of ease of implementation, as no detailed 

(and,typically, difficult to obtain) information is 

needed, they, like the simple averages they replace, 

tend to ignore crucial contextual information 

contained in the timing of when runs are scored or 

wickets taken. 
 

One reason no early attempts were made to add 

match context to performance metrics was that, until 

recently, there was no definitive quantitative measure 

of “match situation” to incorporate.  An early attempt 

to assess the net contribution of individual players 

using contextual information was investigated by 

Johnston et al. (1993) employing a dynamic 

programming approach to assessing expected versus 

observed outcomes on individual deliveries.  

However, with the development of the Duckworth-

Lewis (D/L) methodology (Duckworth and Lewis 

1998, 2004), which determines the relative 

importance of each ball bowled in a limited overs 

cricket match by calculating the proportion of the 

final total score which would have been expected to 

be scored, given the match situation at the time (i.e., 

how many balls remain in the innings and how many 

wickets have already been lost).  A number of 

authors (for instance, Clarke and Allsop, 1993; de 

Silva et al, 2001; and, Stern, 2008) used the D/L-

defined notion of “scoring resources” in assessing 

match outcomes (margin of victory and team 

performance ranks).  In addition, Beaudoin and 

Swartz (2003) defineda player’sRuns per Match 

(though perhaps a more accurate name would beRuns 

per Resources Utilised) as a potential replacementfor 

the common averages. 
 

To better account for the true value of runs scored 

and conceded, Lewis (2005) suggests that player 

performance in a match is sensibly calibrated using a 

measure of the net runs attributable (NRA) to them.  

While we leave the details of the calculations to the 

following sections, we note that the underlying 

philosophy of this approach is to assess not only the 

number of runs scored or conceded, but to also 

contextualise their importance. For instance, a batter 

who scores a large number of runs, but does so 

slowly and utilising excessive resources, will find 

that his NRA is far lower than his actual run total, 

and may even be negative. 
 

As such, Lewis (2005) suggests the contribution of 

any player can be assessed by comparing their actual 

output with what would have been expected to occur 

during the period of the match to which they 

contributed.  In this paper, we continue this train of 

development by extending the idea of a player's NRA 

in any given match to include an assessment of not 

just the timing of their performance but also the 

relative quality of the opposition they faced. To do 

so, we proceed by using the fundamental construct of 

determining what would have been expected to 

happen had the player being evaluated been absent 

from the match and instead been replaced by a player 

with an “average” contribution. In this respect, our 

newly proposed adjusted NRA (aNRA) for cricketers 

is akin to the concepts which have become staples of 

the famous “sabermetrics” movement in American 

Major League Baseball (popularised in the famous 

book Moneyball by Michael Lewis). 

 

2. NET RUNS ATTRIBUTABLE 
 

Lewis (2005) suggested that a batsman’s or bowler’s 

net contribution to his side could be calculated by 

assessing how many runs he actually scored or 

conceded, respectively, in relation to the number of 

runs he would have been expected to score or 

concede given the proportion of his team’s resources 

he utilised.  For example, if a batsman accumulated a 

large personal score, but in order to do so utilised an 

excessive amount of his team’s available resources, 

then his contribution would be appropriately down-

weighted.  Further, this gives a method to assess the 

true contribution of batsmen at different spots in the 

order, since early batsmen must weigh the risks of 

losing wickets differently than those batting at the 

end of the innings. 
 

2.1. Lewis’ Net Runs Attributable for Batsman 
 

Specifically, Lewis (2005) suggested that the net runs 

attributable (NRA) to the ith batsman in a given side 

for a given match should be defined as: 

           

    

 

whereKi is the set of indices of balls faced by 

batsman i, k is the number of runs scored by the 

batsman (i.e., excluding extras) on the kth ball and k 

is the expected number of runs scored on the kth ball.  

To determine k, Lewis (2005) suggested employing 

the Duckworth-Lewis (D/L) methodology, so that k  

= G50k, where k is the D/L resources associated 

http://www.reliancemobileiccrankings.com/p
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with the kth ball and G50 is the global average score 

for 50-over matches of the appropriate level (e.g., for 

men’s international matches at present G50 = 245).  
 

While this approach definition provides stability and 

makes sense over the long-run, we note that the value 

of G50 has gradually increased over the years, which 

means that recent player ratings would not be directly 

comparable to historic ones.  Moreover, using the 

global average value of G50 will mean that player 

performances will not be calibrated to the match-

specific conditions which, in the short to medium 

term, will mean, for instance, that batsmen who tend 

to play on batting-friendly pitches will have their 

assessment measures overstate their actual 

performance when compared to batsmen who tend to 

play on bowling-friendly pitches. 
 

Instead, then, we might choose to define k = Uk, 

where U is a match-specific resource utilisation rate 

based on the observed scoring rate in the specific 

match in which the players' performances took place. 

There are several possible choices for U.  We might 

use the innings-specific utilisation rate associated 

with the innings in which batsman i participated, so 

that U = S/R where S is the final score (of runs off the 

bat) of the innings in which the player being 

evaluated participated and R is the total resources 

available in that innings (e.g., a full 50-over innings 

would have R = 1, meaning U = S).  Doing so, 

however, will tend to damp performances, since a 

large innings score will translate into a large base 

utilisation rate and thus mean that individual 

performances gauged against this baseline will not 

appear as impressive as they actually were.   
 

As an alternative, we can define an overall match-

specific utilisation rate, so that 

  
     

     
 (1) 

whereS1 and S2 are the total runs scored off the bat in 

the first and second innings, respectively, and R1 and 

R2 are the associated total innings resources.  In this 

way, we use all available match-specific information 

to assess the appropriate baseline for comparison, 

meaning that if one innings score is much larger than 

the other, the batsmen who scored those runs will get 

appropriate credit (and the bowlers of the opposition 

will also be adequately held accountable).  
 

Even using the overall match scoring rate (1), though, 

has an issue.  Specifically, if we are to assess the 

performance of a player accurately, we should assess 

their performance against an expected rate calculated 

from the observed performace in the match with their 

own contribution removed.  Otherwise, an extremely 

good (or bad) performance will noticeably affect the 

overall match-specific resource utilisation rate and 

make individual performances seem less pronounced 

than they actually were.  Thus, we define the adjusted 

baseline resource utilisation rate for the ith batsman: 

   
        

        
                                       (2) 

where          
 and           

 represent the 

runs scored and the resources used by batsman I, 

respectively.  Using (2), we then set the net runs 

attributable to batsman ias: 

                 
. 

 

2.2. Net Runs Attributable for Bowlers 
 

The calculation of the corresponding performance 

measure for the jth bowler follows essentially 

identical lines, but must take account of the fact that 

wides and no balls are counted against a bowler. 

Also, more runs means a worse performance for a 

bowler as opposed to a better one.  So we define our 

measure as a subtraction of expectation minus 

observation, as opposed to the reverse as we did for 

batsmen.  As a result, the net runs attributable to a 

bowler should be interpreted as the net runs he was 

able to prevent when compared to the average rate of 

runs conceded by the other bowlers in the match. 
 

Thus, the net runs attributable to bowler j is: 

                      

        

            

where Lj is the set of indices of balls bowled by 

bowler j, k is the number of wides and no balls 

tallied on the kth ball,           
 is the total 

number of wides and no balls delivered by bowler j, 

          
 is the resources associated with the 

deliveries of bowler j,                
 is the net 

runs off the bat attributable to the bowler (a quantity 

we shall find useful in the next section),    

       is the expected runs off the bat for ball k, the 

function j(k) represents the index number of the 

bowler who delivered ball k, and we define the 

baseline rates of runs scored off the bat and runs from 

no balls and wides relevant for bowler j as 

   
        

        
and     

        

        
, 

whereW1 and W2 are the total wides and no balls 

bowled in the first and second innings, respectively. 
 

2.3. Opponent-Adjusted Net Runs Attributable 
 

The net runs attributable is a major advancement on 

the more commonly used performance measures such 

as batting and bowling averages and strike or 

economy rates.  However, NRA does not adjust 

directly for the ability of the individual opponents 

faced (they do, of course, account for the overall 

ability of the opponents as a team, but not for the 

individual fluctuations of ability within the opponent 

team). Clearly, if a batsman faces most of his 

deliveries from the opponent's best bowler, then his 

net contribution will be expected to be lower than it 

would have been had he faced the lesser bowlers. 
 

To account for this, we can compare a player’s runs 

scored or conceded not to a “match averaged” 
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expectation, but to an adjusted version which 

accounts for which opponents were faced.  In 

particular, we can define adjusted versions of Ni and 

Mj by augmenting the expected runs values,   and 

  , with an adjustment factor to account for the 

match performance of the opponent faced on that 

delivery.  Specifically, we will define the adjusted 

net runs attributable (aNRA) to a batsman as: 

              

           

 

                     

           

 

whereJi is the set of indices of bowlers faced by 

batsman i,  is a tuning parameter (set to 0.01 in 

what follows, though further work is needed to assess 

an optimal value) and jk = k/rj is the proportion of 

the resources associated with the jth bowler's 

deliveries that the kth ball comprises. 
 

Similarly 

              

           

 

                               

           

 

whereIj is the set of indices of batsmen that bowler j 

faced and  ik = k/ri is the proportion of the 

resources associated with the ith batsmen's deliveries 

that the kth ball comprises. 
 

This adjustment allows for opponent performance by 

simply replacing the average expectation for any 

given ball by an amount which is modified according 

to the average performance (within the match) of the 

specific opponent. For instance, for a batsman's 

calculation we compare their ball-by-ball scores, k, 

to an expected outcome which comprises the overall 

average expection,   , modified by a proportion of 

the resource-weighted average amount of net runs 

attributable to that ball for the opposing bowler, 

though we are careful in this case to adjust according 

to mj, the actual runs off the bat attributable to bowler 

j and not Mj, as a batsman's performance does not 

include wides and no balls.  Also, note that the use of 

the proportionality constant, , allows for this 

process to be both iterated and damped so that the 

adjustment does not become “circular”. 
 

3. USES OF NET RUNS ATTRIBUTABLE 
 

Using ball-by-ball data compiled from commentary 

of all completed IPL matches between 2010 and 

2013, we now examine the top performers in terms of 

aNRA.  In particular, we examine both average 

performances across matches played, as well as 

individual performances within single matches.  The 

former investigation allows us to assess the overall 

rating and ability of players, smoothing out the 

vagaries of performances within individual matches.  

The latter investigation, however, indicates which 

players most contributed to their team’s performance 

on the day.  As will be discussed, such individual 

match investigations will allow us to determine the 

extent to which a player’s performance in a given 

match had a direct influence on its final outcome. 
 

3.1 Player rating and ranking 
 

Table 1 shows the top 20 average aNRA values for 

batsmen and bowlers who contributed (i.e., actually 

did bat or bowl, as opposed to just being in the side) 

in at least 10 matches over the entire period.   In 

addition, each batsman’s average and strike rate (runs 

per 100 deliveries faced) is included and each 

bowler’s average and economy rate (runs conceded 

per over bowled) along with the rank of each of these 

values among the 125 batsman and 106 bowlers who 

played in the IPL between 2010 and 2013 and 

contributed statistically to at least 10 matches. 
 

For those who follow cricket, most of the names in 

Table 1 are both familiar and not unexpected, as they 

are also the players who top lists of the more 

conventional statistical measures.  Indeed, 7 of the 10 

highest batting averages and 9 of the 10 lowest 

bowling averages belong to players in Table 1, as do 

7 of the 10 highest batting strike rates and 9 of the 10 

lowest bowling economy rates.  It is no surprise, 

then, that the Pearson and Spearman correlations 

between average aNRA and the more commonly 

used statistics are reasonably high, as Table 2 shows 

(note that the correlation values are negative for the 

bowling statistics since for the usual measures lower 

values indicate better performance, while aNRA has 

been defined so that larger values indicate better 

performance for both batsman and bowlers). 
 

Nevertheless, there are some interesting omissions 

and inclusions in Table 1.  As a notable example, 

Sachin Tendulkar, perhaps the most accomplished 

batsman of his generation, does not appear.  In part, 

this may be attributed to the fact that he is reaching 

the end of a long career.  However, there are also 

suggestions that, while he has scored numerous runs 

(over the four seasons, Tendulkar scored 1,782 runs 

at an average of 35.64, which ranked 10th), he often 

does so at a rate which is potentially detrimental to 

his team.  Of course, care must be taken in making 

such an interpretation, but it is interesting that despite 

his very high batting average, Sachin’s average 

aNRA for the 4 seasons under study is only 1.70. 

 

Other notable bastman missing from Table 1 are 

Michael Hussey, whose batting average of 42.31 was 

the fourth highest but his performances only 

translated to an average aNRA of 1.18 (36th ranked); 

and ViratKohli, an up and coming Indian player 

whose batting average of 37.24 was 8th highest but 

whose average aNRA of 0.26 was only ranked 66th.  

Furthermore, neither Kumar Sangakkara, 

MahelaJayawardene nor Rahul Dravid are among the 
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top 20, despite each having very high batting 

averages and aggregate runs totals during the period. 

Table 2: Correlations between aNRA and Common Measures 

On the bowling side there are notable omissions as 

well, including Zaheer Kahn (though he is ranked 

25th), the brothers Morne and AlbieMorkel (ranked 

41st and 71st, respectively) and Dwayne Bravo 

(ranked 50th). Another key name which does not 

appear in Table 1 is Jacques Kallis, widely regarded 

as one of the best all-rounders of his generation: in 90 

IPL matches between 2008 and 2013 he score 2,276 

runs (6th most all time as of the close of 2013) and 

took 61 wickets (18th most all time, again as of the 

close of 2013).  Nevertheless, many critics have been 

of the view that his batting style is not suited to the 

requirements of Twenty20 cricket.  His aNRA tends 

to support this view (over the 20103 period, his 

batting aNRA was 2.41 which ranked 110th among 

those with at least 10 innings during that timeframe).  

By contrast, the current all-rounder seen as on a par 

with Kallis, Shane Watson, appears in Table 1 on the 

batting side and his bowling aNRA is ranked 29th.  

Interestingly, critics of Watson have proferred views 

that his batting style is not suited to the traditional 

longer form of the game (and a basic comparison of 

Test career statistics for Kallis and Watson clearly 

support this position). 
 

Of equal interest to the omissions, some of the 

inclusions in Table 1 show that having a high batting 

average or low bowling average is not necessary to 

make an important contribution to the team score.  

For instance, Kieron Pollard adds an average of 

nearly 3 runs per match as measured by aNRA but 

has only the 43rd highest batting average at 25.83, 

and Harbhajan Singh, primarily a bowler, makes the 

top 20 list as a batsman despite his batting average of 

only 19.64.  In addition, Brad Hodge, primarily a 

batsman and only a part-time spin bowling option 

adds over 2.5 runs per match according to aNRA, 

despite his high economy rate of nearly 7.5 runs per 

over (ranked 39th).  In part, this may be explained by 

batsmen taking unwarranted risks off his bowling as 

he is not a top-line bowler and this view is only 

enhanced by noting that Hodge’s bowling average of 

14.20 is the lowest among all 106 bowlers with at 

least 10 bowling performances. 
 

Overall, the pattern of included and excluded players 

suggests that aNRA rewards players who contribute 

quality not quantity. In addition, it recognises that 

being not out, for batsman, is not necessarily of huge 

importance, unlike the case for batting averages, 

where lower order batsman often gain the benefit of 

increased batting averages due to a large proportion 

of not out innings.  Similarly, aNRA recognises that 

taking wickets is only directly important insofar as it 

helps keep scoring rates down.  Thus, taking wickets 

late in matches, when batsmen are playing in a high 

risk manner in search of quick runs, will aid the 

bowling average greatly, but not the average aNRA.  

Of course, none of these observations directly 

validate or invalidateaverage aNRA as a rating 

measure.  However, the underlying D/L structure 

gives aNRA a solid foundation.  Moreover, we note 

that a recent ad hoc measure that has been proposed 

for batsmen is the so-called APS (average plus strike 

rate) and Figure 1 displays the relationship between 

this statistic and the average aNRA for the 125 

batsmen who had at least 10 innings during the four 

IPL seasons between 2010 and 2013. 
 

Table 1: Top 20 IPL Batting and Bowling Performers by average aNRA between 2010 and 2013 

Batsmen Bowlers 

Player 

Average 

aNRA 

Batting 

Average 

(rank) 

Strike Rate 

(rank) Player 

Average 

aNRA 

Bowling 

Average 

(rank) 

Economy 

Rate  

(rank) 

1. CH Gayle 11.89 55.74 (2) 164.28 (1) 1. SP Narine 9.36 14.65 (2) 5.47 (1) 

2. SR Watson 8.26 37.51 (7) 143.50 (11) 2. MM Sharma 6.29 16.30 (5) 6.43 (7) 

3. KP Pietersen 7.53 60.11 (1) 148.63 (5) 3. A Kumble 6.06 23.94 (28) 6.43 (6) 

4. V Sehwag 6.74 30.19 (27) 157.31 (3) 4. R Rampaul 5.98 20.08 (10) 6.93 (20) 

5. DA Miller 5.67 51.60 (3) 156.84 (4) 5. DL Vettori 5.84 33.84 (74) 6.54 (8) 

6. G Gambhir 5.15 31.75 (22) 128.18 (42) 6. A Chandila 5.74 22.00 (20) 6.21 (2) 

7. MS Dhoni 4.81 36.51 (9) 147.05 (8) 7. JP Faulkner 5.54 15.88 (3) 6.94 (21) 

8. RN ten Doeschate 4.54 30.43 (26) 135.67 (18) 8. DW Steyn 5.26 20.82 (12) 6.27 (3) 

9. S Sohal 3.74 24.90 (50) 130.37 (32) 9. R Ashwin 5.07 24.23 (30) 6.40 (5) 

10. SK Raina 3.30 35.40 (11) 141.19 (15) 10. SL Malinga 4.56 18.08 (6) 6.60 (10) 

11. KA Pollard 2.85 25.83 (43) 147.08 (7) 11. M Muralitharan 3.69 25.91 (36) 6.98 (23) 

12. SPD Smith 2.74 40.08 (5) 130.58 (30) 12. RE van der Merwe 3.69 20.83 (13) 6.28 (4) 

13. STR Binny 2.56 28.53 (34) 141.72 (13) 13. GB Hogg 3.67 28.40 (51) 7.22 (32) 

14. YK Pathan 2.50 26.56 (41) 140.81 (16) 14. S Nadeem 3.48 34.24 (76) 6.66 (12) 

15. RG Sharma 2.46 32.96 (20) 129.41 (36) 15. MG Johnson 2.76 19.13 (8) 7.17 (28) 

16. DA Warner 2.45 29.58 (29) 134.46 (21) 16. DE Bollinger 2.74 18.73 (7) 7.22 (31) 

17. SE Marsh 2.28 37.85 (6) 130.40 (31) 17. SK Warne 2.69 28.25 (49) 6.99 (24) 

18. RV Uthappa 2.21 27.87 (36) 129.45 (35) 18. Shakib Al Hasan 2.59 16.09 (4) 6.67 (13) 

19. Harbhajan Singh 2.09 19.64 (84) 147.44 (6) 19. BJ Hodge 2.54 14.20 (1) 7.47 (39) 

20. RA Jadeja 2.05 23.28 (59) 131.32 (26) 20. B Kumar 2.38 29.96 (58) 6.71 (15) 

Batsmen (n = 125) Bowlers (n = 106) 

Statistic Pearson Spearman Statistic Pearson Spearman 

Batting 

Average 
0.665 0.606 

Bowling 

Average 
0.431 0.564 

Strike 
Rate 

0.767 0.870 
Economy 

Rate 
0.858 0.868 
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The correlation between average aNRA and APS is 

0.8, higher than for either batting average or strike  
Figure 1: average aNRA versus Batting Average plus Strike 

Rate (APS) for 125 IPL Batsmen 

rate individually (see Table 2), and gives a degree of 

external validation for aNRA as a rating tool for 

batsmen, given that APS is generally agreed by 

experts to give a good generic assessment of a 

batsman’s capabilities in the Twenty20 format.  The 

benefit of aNRA over APS lies in its methodological 

underpinnings, avoiding the somewhat arbitrary 

simple summation of the two basic statistical 

measures of batting performance.  For example, there 

is no solid rationale as to why the two statistics are 

equally weighted in the APS combination. 
 

To further examine the alignment of aNRA values 

and “expert” opinion, we now investigate aNRA 

values from individual matches. 
 

3.2. Man of the Match Award calculations 
 

The worth of individual performances can be 

measured in many ways; however, we focus here on 

the player(s) with the highest aNRA in the match.  

Doing so immediately raises the question of 

comparison of batting and bowling aNRA values.  

Given that each are ostensibly measured in terms of 

runs attributed to an individual, it seems reasonable 

(and indeed is a strength of the metric itself) that 

simple additive combination of batting and bowling 

values gives a sensible measure of the overall 

contribution of an individual player to a single match 

(of course, it does not measure contributions made 

via the third major discipline of the game; namely 

fielding).   We refer to this value as the combined 

aNRA, or cNRA. 
 

Assessing the reasonableness of this combined aNRA 

as a measure of performance, we examine the 

frequency with which players with high combined 

aNRA are deemed to be the “Man of the Match 

(MoM)”, an award given in each game played by a 

pre-determined (though often different for each 

match) panel of “expert” assessors.  Table 3 gives a 

breakdown of the correspondence between players 

with the high combined aNRA and the MoM award. 
 

Table 3: Man of the Match Awards in IPL 2010 to 2013 

So, in just over half the matches, the winner of the 

MoM award also had the highest combined aNRA of 

any player in the match.  Further, in nearly 60% of 

the matches, the MoM award went to the player with 

either the highest combined aNRA overall or else the 

highest combined aNRA on the winning side, where 

MoM awardees come from well over 95% of the time 

(of the 282 IPL matches completed between 2010 

and 2013, only 7 MoM awardees played on the losing 

side).  If we broaden our scope, Table 3 indicates that 

over three-quarters of MoM award winners had either 

the highest combined aNRA value or the highest 

individual aNRA value in one discipline (perhaps 

restricted to scores from the winning side).  Given 

this, we conclude that the aNRA metric is reasonably 

well in line with what experts deem to be the “best” 

performance of the match.  Indeed, as Table 3 further 

shows, when we include combined aNRA values in 

the top 3 for each match, we capture 84% of all MoM 

award winners. 
 

While the degree of matching between high aNRA 

values and MoM award winners gives some degree 

of validity to the use of aNRA as an appropriate 

rating metric, it is equally instructive to investigate 

the remaining 45 (16%) matches in which the MoM 

award winner did not have one of higher aNRA 

values.  Table 4 breaks down these 45 matches 

according to some simple criteria.  

Table 4: Breakdown of Man of the Match with low aNRA 

Man of the Match awardee with low aNRA had: (n = 45) 

Criteria Count Percentage 

Highest individual score in match 16 35.6% 

Highest individual score on winning side 9 20.0% 

Highest wicket tally in match 12 26.7% 

Highest wicket tally on winning side 2 4.4% 

TOTAL: 39 86.7% 

This casts the correspondence of Table 3 in a 

somewhat different light, as we see the expert panel 

Man of the Match awardee had: (n = 282) 

Criteria Count 

Cumulati

ve 

Percenta
ge 

Highest combined aNRA in match 147 52.1% 

or Highest combined aNRA on winning 

side 

163 57.8% 

or Highest individual aNRA in match 167 59.2% 

or Highest batting aNRA value in match 186 66.0% 

or Highest bowling aNRA value in 

match 

202 71.6% 

or Highest individual aNRA on winning 
side 

205 72.7% 

or Highest batting aNRA value on 

winning side 

211 74.8% 

or Highest bowling aNRA value on 
winning side 

218 77.3% 

or Combined aNRA among top 3 in 

match 

237 84.0% 



 32 

assessment skews toward the traditional metrics of 

quantity of runs and/or wickets (indeed, in 2 of the 6 

matches not covered in Table 4, the MoM winner had 

what would typically be deemed to be the best 

“quantitative all-round” performance in terms of 

combined runs scored and wickets taken).  While 

high aNRA values will frequently align with the best 

“quantitative” performances (which explains the high 

correspondence in Table 3), the underlying focus of 

aNRA is quality instead of quantity, and explains the 

discrepancy in the matches investigated in Table 4.  

Just finally, though, it should be pointed out that in 2 

of the 6 matches not covered by the criteria in Table 

4, the MoM winner’s performance fell in to the 

category of “match winner”; that is, a performance 

which was not quantitatively the largest, but was 

clearly key in taking the match position from a 

potentially losing one to a winning one (e.g., in one 

such instance, eventual MoM winner DR Smith, 

having scored just 10 runs from the 6 deliveries he 

had faced and needing 14 runs for victory from the 3 

remaining deliveries, a seemingly hopeless position, 

proceeded hit a six and two boundaries to grasp 

victory from the jaws of defeat, though not 

accumulating many net runs attributable). 
 

3.3. Player salaries 
 

Finally, we investigate the relationship between 

cNRA and the 2014 salary of players.  It should be 

noted that the 2014 salary of players is determined in 

two possible ways.  Players whose contracts are not 

complete may be “retained” by their current club at 

their previous salaries.  Otherwise, the remaining 

players (i.e., players either not retained or out of 

contract) have their salaries determined at auction.   
 

Figure 2 shows the relationship between 2014 salary 

and the players average cNRA over the previous 4 

seasons.  Clearly, there is some connection between 

ability and salary, but there are also other factors at 

play.  In particular, while winning matches is the 

driving incentive for players, the team owners are 

generally interested in profit.  Of course, having a 

winning team is a good way of generating profit, as 

fans tend not to flock to watch losing teams.  

However, there are other factors which determine 

attendances and profits.  Specifically, name 

recognition is important in bringing in large crowds.  

As such, we note that many of the apparently over-

valued players (i.e., those whose salary is large 

relative to their ability, as measured by average 

cNRA) are well-known Indian players, such as 

ViratKohli and Yuvraj Singh, who would tend to 

have loyal followings.   
 

Alternatively, salaries may also be driven by 

international economics.  Indeed, many of the 

apparently under-valed players are from Pakistan or 

the West Indies.  In these countries, income for 

cricketers is limited, and thus they will likely be more 

willing to play for (relatively) lower wages.  

Furthermore, domestic players without any 

international experience have their salaries capped. 
 

Figure 2: average cNRA versus 2014 Salary for IPL Players 

 
 

Finally, though, we note that there is some 

connection between skill and salary, and thus there 

may well be interest among team owners in trying to 

determine whether they are under- or over-paying 

their players.  Doing so might allow them to 

construct a team more likely to be successful at a 

fixed salary level. 
 

4. CONCLUSION 
 

In this paper, we have introduced extensions to 

Lewis’ NRA measure of individual contribution to a 

limited-overs cricket match.  The extensions include 

improved relative comparisons by employing 

expected results which account for scoring rates of 

the other players in the match as well as the relative 

proficiency of actual opponents faced. 

 

We have seen that the newly derived performance 

metrics, aNRA and cNRA, have a reasonable 

correlation with more traditional statistical measures; 

however, given their use of contextual information 

via the D/L methodology, we believe they provide a 

more appropriate and interpretable measure of value.  

Nevertheless, we should clearly note that these 

measures do still have various deficiencies.  In 

particular, they cannot account for fielding, nor do 

they account for the potential importance of 

partnerships in determining valuable contribution to 

the team outcome.  For instance, it may be that a 

batsman playing a “sheet anchor” role will be 

extremely valuable to a team’s performance even 

though on its own his innings may seem to be scoring 

at a relatively low resource utilisation rate.  Similarly, 

strike bowlers are well-known to have generally high 

economy (and thus resource utilisation) rates, but the 

potential psychological factors that their inclusion in 

the team brings may lead to other bowlers achieving 

greater success than they otherwise would have. 
 

To some extent, some of these shortcomings can be 

ameliorated if we adjust our metric to focus not just 

on the performance of individuals but on the outcome 
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of a match.  For example, a batsman playing the 

“sheet anchor” role in a losing side may well be 

blamed for batting too slowly, while in a winning 

side his contribution is clearer.  To this end, further 

work on extending aNRA and cNRA to include 

indicators of whether the individual player in 

question was on the winning or losing side is 

warranted and is currently ongoing. 
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Abstract 

This paper investigates fitting Weibull probability distributions to “required runs” data during the second 

innings of one-day international cricket matches (ODI), to derive a profit from wagering. Each innings consists 

of a maximum of 50 overs, which decay at a constant rate as the match progresses, and 10 wickets, which 

decay as the bowling team dismisses each opposition batsman. Any intersection of these resources in the 

second innings—defined in this research as the “match state”—yields the required runs variable (R) or the 

difference between first-innings team (p) runs plus one runs (target) and observed second-innings team (q) 

runs at match state, t. Historical match states were populated using “ball-by-ball” data and Weibull 

distributions with optimised scale parameters fit to the R samples of sufficient size. Bootstrapping was applied 

to generate relevant statistics in match states where parametric assumptions were violated. The probability 

density function produced the likelihood of q defeating p, given any match state in the second innings and the 

team strengths, which were determined by a betting agency’s head-to-head odds offered immediately prior to 

the commencement of the first innings. The probabilities were converted to decimal odds and compared with 

the betting agency’s odds of q defeating p, simultaneously offered at match state, t. A stratified betting strategy 

with a fixed amount wager on the author’s head-to-head favourite at selected match states produced an 

attractive return on investment.  

 

Keywords: Weibull distribution; probability density function; return on investment   
 

 

1. INTRODUCTION 

One-day international cricket (ODI) is a bat and ball 

sport comprising a maximum of 300 legitimate 

independent trials, or deliveries from the bowling 

team to the batting team, over two innings. Each 

team needs to accumulate as many runs as possible 

for a maximum of 50 “overs” (one innings) or until 

10 of the 11 batsmen in the batting team are 

dismissed, or “out”. The team batting first is 

declared the winner if one of these terminal points is 

reached in the second innings with the second 

batting team victorious if they surpass the first 

innings team’s total with wickets and/or overs 

remaining.
1

 The discrete composition of limited-

overs cricket, in comparison to test cricket which 

lasts a maximum of five days with each team 

allotted two innings each to score their runs, has 

provided statisticians and mathematicians with 

                                                
1 The winning runs may be struck from the final delivery 

of the innings. 

countless research opportunities through the game’s 

lifetime; Lewis (2005) described the game of cricket 

as a “sporting statistician’s dream”. Statistical 

modelling of runs scored for predictive purposes has 

been of particular interest with work as early as 

Elderton (1945) and Wood (1945) proving the 

geometric distribution to be an adequate fit for test 

match cricket runs. In the 50-over game, Clarke and 

Allsopp (2001) and de Silva et al (2001) made use of 

the Duckworth-Lewis rain interruption rules 

(Duckworth and Lewis, 1998) to project a second 

innings winning score, after the match’s completion, 

to calculate a true margin of victory with respect to 

runs, not just wickets. The online publishing of 

“ball-by-ball” data in recent times has facilitated 

statistical modelling of matches in progress, or “in-

play”. Swartz et al (2006) applied a log-linear model 

to simulate runs scored during any stage of an ODI 

match for a proposed batting order while Sargent 

and Bedford (2012) simulated in-play outcomes 

through conditional probability distributions where 

the likelihood of a run(s) or a dismissal was 
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estimated prior to any delivery. The huge volumes of 

money wagered on ODI matches, as well as 50-over 

matches at the domestic level, have whet the 

appetites of researchers attempting to exploit betting 

market inefficiencies. Bailey and Clarke (2004) 

designed strategies to maximise profits derived from 

wagering on one batsman outscoring another during 

the 2003 ODI World Cup. Easton and Uylangco 

(2007) were even able to provide some evidence of 

the ability of market odds to predict the outcomes of 

impending deliveries in ODI matches. The research 

detailed in this paper was encouraged by fluctuations 

in in-play betting market odds which, at certain 

match stages, may over- or undervalue the 

likelihood of a team winning the match. By 

generating optimal betting moments with respect to 

the “match state” and the strength of the competing 

teams, it was anticipated that significant profits 

could be derived from the inefficiencies in these 

head-to-head market offerings. 

The match state in either of the first or second 

innings describes the evolution of an ODI match 

through a finite number of intersections of overs— 

sets of six deliveries from the bowling team—and 

wickets—the number of times the bowling team has 

dismissed a member of the batting team. Overs 

decay at a constant rate as the match progresses 

while wickets decay as the bowling team dismisses 

each opposition batsman. Duckworth and Lewis 

(1998) modelled the joint decay of these two 

resources when setting revised second innings run 

targets for rain-interrupted matches. To win the 

match, the team (q) batting in the second innings of 

an ODI attempts to eclipse the first innings team’s 

(p) aggregate runs; this is termed the “run chase”. 

Archival records suggest the highest ODI run chase 

was achieved by South Africa in March, 2006, 

surpassing Australia’s record first innings total of 

434 with one delivery remaining in the match. The 

lowest chase was achieved by Sri Lanka in April, 

2004, chasing down Zimbabwe’s paltry total of 35 

within the first ten overs of the match. With a 

sample of ball-by-ball run chase data from 

completed ODI matches going back to 2005, all 

possible match states were populated by team q’s 

required runs for victory (R) at any stage in the 

second innings. Following some descriptive 

analysis, Weibull distributions, with optimised α and 

β parameters, were found to be adequate fits for 

most of these R samples with the probability density 

functions housing the likelihood of team q 

surpassing team p’s run total at any match state, ti=2. 

The Weibull distribution was especially relevant 

given its common use in testing failure rates 

(achieving the run target) over a specified time span 

(50 overs) (Smith, 1993). In-play head-to-head 

market odds of q defeating p were logged in close 

intervals during a series of recent ODI matches, 

assigned as the training set, then paired with the 

Weibull odds from the same t. Pre-match head-to-

head market odds were also recorded as team 

strength indicators. A stratified betting strategy was 

devised where in-play betting moments were 

conditional on the match state with the best fitting R 

distributions, the pre-match market favourite and 

states with positive overlay. Return on investment 

increased as each stratum was added to the training 

sample, reaching in excess of 20%.           

2. METHODS 

i. Match State 

An ODI match state, tv,w was defined in this research 

as any intersection between the number of elapsed 

overs (vi = 1,…,50) and the number of dismissals (wi 

= 1,…,10) during innings i = [1, 2]. Arriving at these 

unique match states required ball-by-ball data which 

was scraped from a cricket website then formatted 

and cleansed so over, wicket and run aggregates for 

every innings matched the “scorecard” (summary) 

data retrieved from the same site. The foundation 

variables were innings, delivery number and 

dismissals—from which to calculate the match 

state—first innings runs (the target) and runs scored 

off each delivery in the second innings to calculate 

the runs required for victory from any t. The sample 

included every delivery from ODI matches played 

by the recognized cricket nations (Australia, 

England, India, New Zealand, Pakistan, South 

Africa, Sri Lanka and the West Indies) dating back 

to 2005. Matches which were abandoned after the 

commencement of play or shortened due to rain 

interruption were excluded from the sample because 

of the erroneous effects of reduced targets. A total of 

439 match states from all games were recognized 

within the sample, excluding terminal points where 

w2 = 10. To ensure adequate distribution fits, only 

match states with statistically large R samples were 

selected. 

Any match state during innings 2 accommodates the 

random variable, runs required for team q’s victory, 

or: 

 qtt rtargetR                   (1) 

where Rt are required runs at match state t, target = 

rpT +1 where rpT are aggregate runs achieved at the 

termination of the first innings by team p, where Tp 

= {t50,w<10 ⋃ tv<50,10}, and rq is aggregate runs 

achieved by team q at match state t (rq = 0 at t0,0). 

The terminal state for i=2 is: 
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where Rt ≤ 0 is victory to team q where v ≤ 50 is 

inclusive of victory from the final delivery of the 

match (v2 = 50), and Rt > 0 is victory to team p at Tq. 

If at Tq, Rt = 1, rp = rq and the match is declared a 

draw. In this scenario, if the teams are playing in a 

series, they share the points on offer; however, 

punters predicting a p or q victory relinquish their 

wager.  

In limited-overs cricket, if team q achieves target, 

they are said to have won by the number of wicket 

resources remaining. In a famous match in 1996 

against the West Indies, Australia, batting second, 

required four runs for victory from the final delivery 

with one wicket remaining (t50,9). Michael Bevan 

was able to hit four runs from the final delivery to 

hand Australia an unlikely victory; Australia won by 

one wicket with Rt = 0 at Tq. In the case where there 

are over resources remaining at Rt ≤ 0, rather than a 

team winning by the number of wicket resources 

remaining, a margin of victory with respect to runs 

can be calculated by rearranging the Duckworth-

Lewis (D/L) formula for resetting a run target (due 

to rain interruption) (Duckworth and Lewis, 1998), 

as demonstrated by Clarke and Allsopp (2001) and 

de Silva et al (2001). Say team q eclipses a modest 

first innings total of 150 by 2 runs with ample 

wickets and overs remaining, and their D/L run 

projection is 275 runs by the end of the 50th over, 

their margin of victory would be 275 - (150 + 2) = 

123 runs. In defeat, team q’s run projection remains 

at rqT and p is said to have won by Rt. For this 

research, where Rt ≤ 0, run projections were 

retrospectively calculated for all rqt, then required 

runs at t recalculated as: 

 qtt rprojR ˆ           (3) 

where proj is the D/L projected run aggregate for 

team q, replacing target. Equation (3) was deemed a 

fairer reflection of q’s ability than (1) as it reflects 

how much further q would have progressed into 

their innings had they kept batting after surpassing 

the target. Figure 1 reveals the spread of the 

recalculated R mean at every match state through 

each over (top) and wicket (bottom). The mean of R 

at each match state in the sample has the lowest 

interquartile ranges at the start and end of the match. 

The start can be explained by a dismissal effect: 

frequent wickets diminish proj and accrued team 

runs—because batsmen become more defensive—

and very few wickets fall in the opening overs (for 

v=2, max(w)=2). The lesser interquartile range 

towards match-end is logical because of the 

combination of teams who win, or are closing in on 

the target in the 50th over and teams who will not 

reach the target by match-end. The diminishing R in 

the wickets boxplot is reflective of a proportional 

relationship with over rate - the further a match 

progresses, the fewer the required runs are likely to 

be but the more likely wickets are to have fallen. 

  

 

 

Figure 1. Dispersion of mean runs required through overs 

(top) and wickets (bottom). 

ii. Distribution Fit 

The two-parameter Weibull distribution is 

commonly used in analysing lifetime data where a 

measured quantity, X is set a “failure rate”, 

proportional to some time period (Smith, 1993), for 

example failure of electronic equipment over time. 

Such properties were found to be applicable to an 

ODI run chase where team q could be set such a 

failure (or in this case, success) rate for achieving R 

through 50 overs. Furthermore, the negative skew in 

the majority of the R distributions demanded a 

flexible distribution, with a wide variety of shapes, 
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such as the Weibull. While it is difficult to locate 

literature on the use of Weibull distributions in 

cricket, its application in estimating goal 

distributions in Association Football (Hamilton, 

2011) and time between goals scored in the NHL 

(Thomas, 2007) is interesting.  

Once the appropriate match states had been selected, 

Weibull distributions were fit to the R samples using 

the probability density function (pdf), denoted as:  
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where k and λ are the shape and scale parameters, 

respectively. These parameters were optimised 

through each sample to minimize the Pearson’s chi-

squared statistic, χ
2
, using the observed (O) and 

expected (E) frequencies from Equation (1), or: 
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  s.t.  λ > 0 and k = 5.  

where k was fixed, i) to address the existence of left 

and right tails in these distributions, ii) because k > 1 

indicates the failure rate is proportional to time, such 

as in a run chase. The mean and variance of the 

Weibull distribution (see Table 1) are as follows: 
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where Γ is the gamma function. Table 1 reveals the 

ten match states with the lowest errors (in ascending 

order) as determined by Equation (5). Of the 127 

match states selected, the maximum overs bowled in 

any state was 41 and maximum dismissals was 6, 

suggesting small and/or volatile samples as the 

second innings approaches its termination. The 

lowest error was at t37,4 averaging 88.19 runs for 

victory, meaning, q required just over 88 runs in 13 

overs; a run rate of 88/13 = 6.76 per over or just over 

a run every delivery. Table 1 confirms the discussion 

in Section 2i that mean and variance of R decrease 

as the second innings progresses and team q acquire 

their runs.   

 

State(t) E(R) Var(R) χ2 

(37, 4) 88.19 20.20 0.1104 

(2, 0) 242.35 55.51 0.1429 

(1, 0) 245.65 56.26 0.1467 

(3, 0) 242.83 55.62 0.1468 

(26, 3) 135.93 31.13 0.1729 

(29, 4) 118.52 27.14 0.1823 

(5, 1) 216.90 49.68 0.1855 

(12, 2) 186.53 42.72 0.1862 

(7, 1) 213.71 48.95 0.2208 

(39, 5) 77.99 17.86 0.2500 

Table 1. Statistics for match states with lowest error. 

In Figure 2, the evolution of f(Rt) as a match 

progresses is revealed through selected distributions 

(with optimised parameters). The right-most 

distribution is at t1,0, the most populated match state. 

The long tails are reflective of the early match stage 

where very few runs have been scored and no 

wickets lost so a wide range of runs falls into the one 

wicket sub-sample (w=0), closely reflecting the 

match state prior to the commencement of the 

innings. The left-most distribution (v=37 and w=4) is 

taller with shorter tails; as the overs decay, required 

runs progressively diminish and fall into 

progressively more wicket sub-samples.  

 

Figure 2. Weibull distributions at four different match 

states. 

From the Weibull pdf, the probability of team q 

scoring the required runs, R with respect to t is:      

 
 kR

tq eRrP /)(             (8)  

where k = 5, λ > 0. A training sample was generated 

which included a series of recently played ODI 

matches between the recognised cricket nations. The 

probabilities from Equation (8) were calculated at 

the completion of each over and where match state 

samples were large. Prior to investigating the 

efficiency of the probabilities generated from the 

Weibull pdf in the in-play betting market, the model 

success rate was tested by calculating the percentage 
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of correctly predicted team q victories from all valid 

match scenarios, mean(θl),  where: 
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where θl is the binary outcome of match scenario l, P 

is P(rq ≥ Rt) and obs is the observed team q match 

outcome: 
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The baseline model predicted 67.1% of team q’s 

victories from any l, irrespective of important 

modelling considerations such as team strength and 

home ground effects. This success rate, whilst 

modest, prompted an examination of the 

probabilities’ performance in in-play wagering (see 

Section 3).    

iii. Betting Strategy  

After the development of team q victory likelihoods, 

a stratified betting strategy was investigated to 

maximise the return on investment (ROI) in the 

head-to-head ODI in-play markets. The first betting 

stratum was generated by indentifying the 

statistically significant match states (see Section 2i); 

Table 1 offers the ten best fitting distributions. This 

is the baseline model where fixed amount wagers, b 

at selected t were defined by:  
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where exp is the Weibull pdf expectation of q 

defeating p expressed in decimal odds. Profit (π) 

generated from each bt for exp < $2.00 was 

calculated with: 

       bmobs tqt  100         (12) 

where mq is the in-play market price offered for q to 

defeat p at t and obs is from Equation (10). The 

second predetermined stratum was a team strength 

effect, that is, betting on q when q was a stronger 

side than p, as determined by pre-match market 

decimal odds, so φq < φp, logged just prior to the first 

delivery of i=1. A third stratum was included, which 

identified exp with positive overlay, simply 

calculated as (exp - mq)/exp. After locating and 

matching reliable in-play market odds, profits at the 

various strata could be calculated. 

 

3. RESULTS 

Table 2 shows the baseline model to be unprofitable 

(ROI=-8.62%) due to heavy losses between $1.01 

and $1.39. The baseline model produces a 17.3% 

ROI when betting on exp between $1.40 and $2.00; 

however, this observation was made with the benefit 

of hindsight. Such a trend would have to be 

monitored in future matches to become reliable.   

 

Table 2. First stratum wagering profit - match state only. 

Triggering the other stratum (betting on q when they 

are the stronger side and with a positive overlay), 

although reducing the number of wagers, 

significantly increases ROI to over 22% (Table 3) 

which is a considerable profit. The prediction 

success rate (AvePick) of nearly 85% is also 

encouraging.  

 

Table 3. Third stratum wagering profit - match state, 

favourite and positive overlay. 

In Table 4, results from Table 3 were filtered so 

betting was triggered when prices were at or above 

$1.40—the observation from Table 2—further 

reducing the quantity of wagers, however, markedly 

increasing the ROI, suggesting profits earned when 

match outcomes are highly probable ($1.00 to $1.40, 

or between 71% and 100%), do not adequately cover 

losses in the same intervals. This is evident in Table 

2 where a success rate of 81% in the $1.00-$1.10 

interval translates to a -13.7% ROI. 

Market inefficiencies were also located in intervals 

of the first stratum, match state (Table 5). By 

wagering on the stronger q in the first five overs of 

innings 2, without any dismissals, ROI was 31% 

suggesting that the markets become more efficient as 
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wickets and overs progress, that is, as the match 

outcome becomes more predictable.  

   

 

Table 4. Third stratum wagering profit - selected intervals 

 

Table 5. Second stratum wagering profit - match state 

intervals 

4. DISCUSSION 

ODI home ground advantage was not investigated in 

this stage of the research but remains a critical factor, 

particularly for sides like India where the pitches are, 

arguably, the most unique in the world. Along with 

team strength, included as a post-hoc consideration 

in this research, such a factor might be best 

addressed as adjustments to the generated 

probabilities, rather than to the betting strategy. 

Team strength was deliberately kept from the R 

samples at this stage to preserve sample size, 

however, it is anticipated that augmenting the 

Weibull probabilities in Equation (8) would be an 

effective solution, rather than further segmenting the 

samples. The research almost certainly stands to 

benefit from a mathematical approach to wagering, 

rather the categorical one outlined in this paper. A 

Kelly system, for example, where optimum wager 

amounts are determined by a mathematical system, 

would be a suitable starting point. Timelines 

prevented this from being feasible but is now a high 

priority. Extending the methodology outlined in this 

paper to the 20-over cricket game would be 

worthwhile because of volatile in-play markets.    

5. CONCLUSION 

The Weibull distribution is an interesting application 

to in-play quantitative analysis as it is concerned 

with a failure rate, that is, the chance of winning a 

match, over some function of time, that is, the match 

length. In-play likelihoods of victory, drawn from a 

Weibull probability density function were not only a 

good predictor of the team batting second chasing 

down their target in ODI matches, but a fine 

indicator of when to lay a bet on that team doing so. 

Selective betting moments in the match, defined by 

elapsed overs and number of dismissals, the pre-

match favourite and a positive overlay, produced a 

return on investment in excess of 20% which is an 

excellent result. The only barrier a punter in 

Australia may face, armed with such a tool, is the 

inability to place a bet on the internet. The beauty of 

cricket is that time between overs should be 

sufficient to make a telephone call and lay the bet.   
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Abstract 

Methods for rating teams in cricket are hampered by the way match results are recorded.  If the team that 

batted first wins, then the margin of victory is expressed in terms of the difference in runs between the team 

batting first and the team batting second.  However, if the team batting second wins, the margin of victory is 

then expressed as the number of remaining wickets for the team batting second.  As there is no meaningful 

mapping function between these two forms of margin of victory, team rating systems in cricket default to 

mechanisms based on win\loss records over a defined time frame.  This paper outlines a method for creating 

performance based team ratings for cricket for application with limited overs cricket, utilising a margin of 

victory that is solely runs based. 

     The challenge lies in the implementation of a method for calculating the margin of victory for the team 

batting second.  This is resolved by estimating the number of runs that would have been scored had the team 

batting second continued until their resources were exhausted.  In this instance, resources refer to the number 

of wicket and balls that are available.  The underlying approach is similar to the Duckworth-Lewis method 

(Duckworth & Lewis, 1998) for resetting the target in rain interrupted matches.  The consequence is a more 

meaningful way of comparing results which is useful for coaching and development purposes. 

     To create a meaningful rating, the algorithm outlined by Bracewell et al. (2009) is implemented.  This 

method has been shown to produce robust ratings based on the relative performances of the competing teams 

across a wide range of different types of team sports. The resultant ratings are validated using an existing 

rating system. 

 

Keywords: cricket, team ratings, Duckworth-Lewis 
 

 

1. INTRODUCTION 

There is a large amount of interest surrounding the 

statistics of sports, evidenced by the adaptation of 

Michael Lewis' (2004) book, Moneyball, into a 

movie (Miller, 2011), describing the use of statistics 

in baseball.  This interest comes from different 

people for different reasons. Teams and coaches 

critically analyse the performance of individuals, 

combinations and teams to derive insights for 

enhancing performance and creating strategies; for 

this they need as much information as possible. Fans 

seek to know how their team, or favourite player, is 

performing relative to other teams or players.  In 

both these examples, it is necessary that suitable 

statistics are simple to understand and interpret, but 

embody as much important information as possible 

to satisfy their desires.  

    Cricket is a data rich sport characterised by 

distinct events between a batsman and a bowler, 

which are all recorded as a minimum standard as 

defined by the laws of the game.  However, the way 

that the margin of victory is defined complicates the 

ability to create meaningful team ratings.  

Considering the limited overs example only, where 

are set number of overs are specified and each team 

is permitted one innings, the winner is the team that 

has the most runs at the completion of both teams 

turn batting.  Crucially, the innings is completed 

either when the allotted overs have been bowled, the 

team is dismissed, or, for the team batting second, 

the target total has been reached.  If the team that 

batted first wins, then the margin of victory is 

expressed in terms of the difference in runs between 

the team batting first and the team batting second.  

However, if the team batting second wins, the 

margin of victory is then expressed as the number of 

remaining wickets for the team batting second.  As 
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there is no meaningful mapping function between 

these two forms of margin of victory, team rating 

systems in cricket tend to default to mechanisms 

which tend to use competition points, win 

percentage or net run rates over a defined time 

frame. 

     The aim of this paper is to create a meaningful 

statistic for cricket that quantifies a team’s 

performance using a method that is more 

informative than the current methods for assessment.  

This aim is achieved by the introduction of  a 

method for creating performance based cricket team 

ratings for  limited overs cricket, utilising a 

framework that provides a margin of victory that is 

solely runs based.  The development of a consistent 

method for quantifying the magnitude of victory 

with a standard measure enables standard rating 

methods to assess the relative performance of teams 

competing within a closed competition.  

     This approach provides greater depth of detail in 

team assessment than winner-takes-all type 

mechanisms, such as competition points or win 

percentage, which are fundamentally binary, or at 

best, ordinal (ICC, 2014).   These approaches ignore 

close losses.  Net run rate is an accepted method for 

ranking teams within a competition, as it is used for 

breaking ties in limited overs tournaments (ESPN, 

2014).   The net run rate for a team is calculated by 

subtracting the average runs per over scored against 

that team throughout the competition from the 

average runs per over scored by that team 

throughout the competition.  However, net run rate 

does not take into account the number of wickets 

that have fallen when a chasing team wins a match. 

The impact of this is most clearly seen in low 

scoring games. If for example the team batting first 

is bowled out for 100 in 25 overs in a 50-over game. 

Then the team chasing wins by scoring 101 in 20 

overs, their net run rate will be 101/20-100/50=3.05. 

A net run rate that large would indicate a very large 

win, but if the winning team was nine wickets down 

when they reached the target you would consider the 

win as anything but convincing. 

     Through the development of a margin of victory 

metric which is consistent, irrespective of whether 

the team batting first won or lost, enables a 

meaningful rating to be created which encompasses 

relative team performance.  Importantly, this enables 

interested parties to review a single statistic to 

understand how well a team has performed 

compared to their competitors.  In addition, the 

statistic is an indication of the team's "form"; hence 

when two teams play each other it provides an 

indication of not only the result (winner/loser), but 

also how evenly matched the contest will be. 
 

2.  TEAM RATING SCORE COMPONENTS 

 

The challenge for creating a suitable team rating for 

cricket lies in the implementation of a method for 

calculating the margin of victory for when the team 

batting second wins.  This is resolved by estimating 

the number of runs that would have been scored had 

the team batting second continued until their 

resources were exhausted.  That is, had a team 

chasing 200 runs to win in 50 overs reached that 

total in just 42 overs, what would they have scored 

had they batted out their allotted overs? 

 

2.1 Methods for forecasting cricket scores 

The underlying philosophy we adopt  is the same as 

that used by Duckworth and  Lewis (1998), where 

the basis of their method is recognition that the 

batting team has two resources at its disposal from 

which to make its total score; it has overs to face and 

it has wickets in hand.  Duckworth and Lewis 

acknowledge the influence of Clarke (1988) in 

highlighting potential approaches for setting a fair 

target in rain interrupted one-day matches.  An 

alternative approach for resetting targets, deployed 

in the now defunct Indian Cricket League, was 

derived by Jayadevan (2002).  Importantly, both 

methods determine what proportion of a team's runs 

it is expected to have scored, based upon the number 

of overs faced and the number of wickets lost.  This 

approach enables the method to be deployed into 

different match conditions as there is an inherent 

adaptation to the run rate in the match.   

     However, these methods are used to adjust rain 

affected targets.  In order to generate a margin of 

victory, the method needs to extrapolate a second 

innings score, rather than interpolate. 

 

2.2 Rating Methods 

Daud and Muhammad (2013) use adaptations of two 

algorithms: PageRank, designed to rank websites in 

search engine results, and h-index, designed to 

measure the impact of a scientist's cumulative 

contributions, for ranking teams.   The intent was to 

give more weight to a team defeating stronger teams 

by considering the number of runs and wickets.  

This approach derives a rating by considering a 

number of recently played matches and assesses the 

total number of wickets taken and runs scored in 

those matches.  This approach avoids the issue of 

defining a margin of victory, but does not consider 

the runs and wickets scored in each match 

independently.   

     There are numerous publications describing the 

development and improvement of sport ratings 

systems.  Stefani (2011) provides a detailed review 
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of methods for officially recognised international 

sports rating systems and is an excellent resource for 

evaluating the strengths and weaknesses of various 

systems. 

     Bracewell, Forbes, Jowett, and Kitson (2009) 

introduced a method for quantifying the relative 

performances of teams, which used score ratios 

rather than scores (or differences), which simplified 

the calculation of the Team Lodeings, L, for the Tth 

team to: 

 

    (1) 

  

where hT and aT are the respective number of home 

and away games played by the Tth team, pt,f is the 

ratio of victory for the Tth Team in the fth match at 

home and qt,f is one minus the ratio of victory for the 

Tth Team in the gth away match.  The ratio of 

victory is calculated for each match as the 

normalized points scored by the home team divided 

by the sum of the normalized points scored by the 

home and away teams. Team ratings are calculated 

for a specified time frame, t, (typically either weeks 

or rounds, where t ≥ hT + aT) enabling team 

performance to be rated and changes in performance 

to be quantified. This is useful for match prediction. 

Higher team ratings are associated with better 

performed teams. The ratings are bound by 0 and 1.  

Importantly, this algorithm is suitable for use within 

cricket as the use of score ratios enables the impact 

of extraneous factors to be limited (boundary size, 

pace of wicket and state of outfield).  The score ratio 

method is preferred as it provides a fairer assessment 

of the performance of both teams in the result. 

Consider rugby-type results 13:3 and 40:30. Both 

have a difference in scores of 10.  However, in the 

second case it appears the game was much more 

even than in the first instance. This is reflected in the 

score ratios which are 0.81 and 0.57, respectively.  

In addition, this approach was shown to be robust 

across many different sports, which is a useful 

property when considering different cricket match 

formats (T20, 40 over & 50 over).  Finally, the 

emphasis of this paper is the consistent definition of 

the margin of victory in cricket, meaning that the 

ratings method is a secondary consideration. 

     Whilst we have chosen to use the ratings 

algorithm described above in this paper, an area for 

future research is the assessment of other algorithms. 

 

3. CONSTRUCTING A PERFORMANCE 

BASED RATING SYSTEM FOR LIMITED 

OVERS CRICKET 

 

There are three key components in the development 

on a performance based rating system for limited 

overs cricket.  The first component is the data. The 

second component, and the most important 

contribution of this paper, is the extrapolation a 

chasing team's total after the total has been reached 

so that a margin of victory in terms of runs can be 

extracted.  The second stage is the application of a 

ratings algorithm to summarise the relative 

performance of teams. 

 

3.1 Processing Data 

Data was extracted from CricHQ's source systems 

(www.crichq.com).  CricHQ is a cricket technology 

industry pioneer with headquarters in Wellington, 

New Zealand.  CricHQ's scoring and competition 

administration software collects cricket data from all 

around the world over numerous levels of 

competition.  The data used for this project included 

final score data from five premier T20 competitions 

around the world (included Indian Premier League, 

HRV Cup and more), over the past one to five years, 

depending on the length of history of that 

competition). We also used data from One Day 

International matches between the top ten ranked 

sides dating back to 2000.  For simplicity, we assess 

matches that were not affected by rain.  Whilst the 

Duckworth-Lewis method can be used to adjust the 

totals in rain affected matches, we have omitted 

those games from our initial analyses.  Subsequent 

applications use an adjustment based on the 

Duckworth-Lewis method. 

 

3.2 Extrapolating a Chasing Team's Total 

In the previous sections it was stated that the main 

obstacle preventing cricket from being processed 

using typical team rating algorithms, is due to the 

margin of victory problem. When team one, batting 

first, wins a game of cricket the result will be stated 

as ‘team one wins by x runs’. However, when team 

two, batting second, wins the result will be stated as 

‘team two wins by y wickets’. The reason for this is 

that team two stops batting as soon as their score is 

greater than team ones score (the target score).  

Consequently, we cannot report how many runs 

team two won by because they may not have used 

up all their resources (balls or wickets), and hence 

could have scored more than they actually did. 

     To resolve this issue, we seek to produce a 

projection of the score team two would have got too 

had they not stopped batting as a consequence of 

winning the match.  The intent is that after this 

calculation, we will have a margin of victory for 

every game in terms of runs. The process employed 

to produce the projections is based on a proprietary 
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algorithm created for CricHQ which includes a 

generic score and probability of winning projection 

model.  The output is available via the CricHQ 

platform (accessed via app stores for a variety of 

technology platforms).  The model considers the 

resources available to team two at the completion of 

the game.  In this instance, resources refer to the 

number of wicket and balls that are available similar 

to the Duckworth-Lewis method (Duckworth & 

Lewis, 1998) for resetting the target in rain 

interrupted matches.  If either of team two’s 

resources have been exhausted at the completion of 

the game then the projection will simply be team 

two’s actual score. However, if team two still has 

resources remaining, but the game is finished, then a 

score projection is calculated.  The difference 

between team two’s forecasted total and their actual 

total is positively related to the amount of resources 

still available to the team at the completion of the 

game. This encompasses the wickets and balls 

resources, along with a value derived from the 

relative team totals, to produce a metric that 

represents the proportion of total resources used by 

team two at the completion of the game.  Again, this 

approach is similar to that used by Jayadevan 

(2002), Duckworth and Lewis (1998). We then 

divide team two’s actual score (C2) by this 

proportion (R2) to get a projection (T2).   

 

    
  

  
  (2) 

 

This result leaves us with a margin of victory for 

every match regardless of which team won.  The 

model is a generic model, and hence allows us to 

produce projections and win margins for multiple 

forms of cricket. However, the focus of this paper is 

limited overs cricket (T20 and 50 Over matches).  

From a practical perspective, this is useful for 

CricHQ as it enables the deployment of ratings for 

teams playing in different age-groups, divisions and  

competitions  across different formats. 

 

3.3 Score Transformations 

The projections of the previous section provide us 

with a win margin in terms of runs for all games 

irrespective of whether the team batting second won 

or lost. These are necessary because in creating the 

team rating we will be using the score ratio which is 

defined as the final total of the team batting first (T1) 

divided by the total number of runs scored in the 

match (T1 + T2); where T2 is the final adjusted total 

of the team batting second.  The final adjusted total 

for the chasing team is simply the final total when 

the chasing team loses or wins from the last ball on 

the innings.  

     However, the raw scores and projections 

discussed in the previous section are not suitable for 

immediate using in a rating algorithm. The nature of 

cricket is such that the scores of both teams tend to 

be large numbers (compared with sports like soccer, 

hockey and rugby union), typically between one and 

two hundred for T20 cricket. This is not ideal 

because when the score ratios are calculated based 

on the raw scores there is not a good spread of the 

resultant output between zero and one, because the 

margin of victory is relatively small compared to the 

team’s totals.  Instead our ratios will be heavily 

concentrated around 0.5, typically between 0.4 and 

0.6.   In addition, the raw team totals are also far 

from being a normally distributed variable.  We 

perform two transformations: to first produce a 

normally distributed variable, and then change the 

scale of this variable so that it has a mean and 

standard deviation that will result in ratios that cover 

a good range between zero and one.   

     A log transformation was used to turn the raw 

scores distribution, less a constant value,  to an 

approximately normally distribution.  The purpose 

for this is to reduce the impact of outlying scores 

and mitigate the impact when chasing teams are 

dismissed cheaply under ideal batting conditions.  

The constant used was determined heuristically and 

chosen to minimise the kurtosis of the distribution.   

 

3.4 Assessing the Validity of Extrapolation 

Before we are able to proceed with deriving the 

score ratios, the validity of the score extrapolation 

for when the chasing team wins needs to be assess.  

To assess this we compare the margins of victory in 

games where the team batting first wins compared to 

when the team batting second wins.  Ideally, the 

winning margin of victory will be distributed 

similarly from the perspective of batting first or 

second.  As the margin of victory when team two 

wins without using all their resource is based on an 

extrapolation we need to ensure that the projections 

have not produced margins of victory that are 

significantly different from those that are produced 

when the team batting first wins.  This is to ensure 

the rating does not tend to unfairly favour either 

side.  The extrapolated total is based on remaining 

resources.  However, one of the strongest indications 

of the scoring potential is the number of balls 

remaining.  Consequently, it is expected that by 

plotting the derived margin of victory against the 

number of balls remaining should display a 

symmetric function, with a turning point near zero, 

to be a suitable fit.  

     Figure 1. below shows the transformed margin of 

victory for T20 games (defined as the transformed 
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team setting score minus the transformed team two 

chasing score) on the horizontal axis with the 

number of balls remaining in the second innings 

shown on the vertical axis.  This means the negative 

x values correspond to when the team batting first 

(setting) lost to the team batting second (chasing). 

 

 
Figure 1: Transformed margin of victory for T20 

matches versus balls remaining in the second 

innings. 

  

There are several key outcomes from the above 

graph.  It can be seen that that the margins of victory 

do not appear to be drastically different, with the 

majority of observations being concentrated between 

plus and minus thirty units and appearing to exhibit 

symmetry.   These key features can be confirmed 

statistically.  A quadratic function adequately 

explains the relationship between  transformed 

margin of victory and balls remaining (r-sq = 

0.8694), highlighting the symmetry.  The resultant 

function: 

                            (3) 

where    is the estimated balls left and M is the 

transformed margin, indicates that the obtained 

margin of victory is indeed symmetrical and 

approximately near 0.   To confirm that the 

distributions of the margin of victory below and 

above zero are relatively similar an F-test for sample 

variances was performed.  The variance of the 

transformed margin of victory when the team bats 

first win (52.04, n=454) is not statistically 

significantly different (p=0.18) to the variance of the 

transformed margin of victory when the team batting 

second wins (56.73, n=426). 

     Consequently, the inability to reject the null 

hypothesis, that the variance of the transformed 

margin of victory when team one wins is the same as 

the variance of the transformed margin of victory 

when team two wins, confirms that the extrapolation 

of a winning chasing team total has not introduced 

any significant bias. 

     In addition, a t-test for sample means assuming 

equal variances was performed to test if the margins 

of victory have a similar mean irrespective of 

whether the team setting or chasing wins. For this 

test we use the absolute value of the margin of 

victory if team two wins so all margins are positive.  

The mean of the transformed margin of victory 

when the team bats first win (8.98, n=454) is 

statistically significantly different (p=0.04) to the 

mean of the transformed margin of victory when the 

team batting second wins (7.94, n=426).  However, 

practically, the difference is only 1 unit, which 

equates to just 2.8 runs.  

     Based on these results, there is sufficient 

statistical evidence to conclude that the method for 

projecting totals when the chasing team wins has not 

produced margins of victory that are unreasonable 

when the team batting second wins.  

   These tests have been focused on T20 data that has 

been projected and transformed. However, our 

projection model is produced as a generic projection 

model, therefore we would expect that the same 

interpretation would apply to 50 over cricket. 

      As with the T20 matches, a quadratic function 

adequately explains the relationship between  

transformed margin of victory and balls remaining 

(r-sq = 0.6873), highlighting the symmetry in 50 

over matches.  The resultant function: 

                             (4) 

where    is the estimated balls left and M is the 

transformed margin, indicates that the obtained 

margin of victory is indeed symmetrical and 

approximately centred around 0.    To confirm that 

the distributions of the margin of victory for 50 over 

cricket below and above zero are relatively similar, 

an F-test for sample variances was performed.  The 
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variance of the transformed margin of victory when 

the that team bats first wins (56.57, n=1136) is not 

statistically significantly different (p=0.12) to the 

variance of the transformed margin of victory when 

the team batting second wins (60.60, n=1217). 

     Consequently, the inability to reject the null 

hypothesis, that the variance of the transformed 

margin of victory when team one wins is the same as 

the variance of the transformed margin of victory 

when team two wins, confirms that the extrapolation 

of a winning chasing team total has not introduced 

any significant bias. 

     In addition, a t-test for sample means assuming 

equal variances was performed to test if the margins 

of victory have a similar mean irrespective of 

whether the team setting or chasing wins. For this 

test we use the absolute value of the transformed 

margin of victory if team two wins so all margins 

are positive.  The mean of the transformed margin of 

victory when the team that bats first won (8.93, 

n=1136) is not statistically significantly different 

(p=0.89) to the mean of the transformed margin of 

victory when the team batting second wins (8.89, 

n=1217).   

     Based on these results focused on 50 over cricket, 

there is sufficient statistical insight to conclude that 

the method for projecting totals when the chasing 

team wins has not produced margins of victory that 

are unreasonable when the team batting second 

wins.  

     The results from this validation of the margin of 

victory on two different limited over match formats 

are critical.  The method for extrapolating the total 

for the team batting second if their innings had 

continued until all resources were consumed 

generates a margin of victory in runs that is 

equivalent to the margin of victory obtained when 

the team batting first wins. 

     This sub-section has shown that we are in the 

position to apply a margin of victory in different 

situations, and hence create cricket team ratings for a 

number of different competitions using runs 

(observed and adjusted) as a performance metric. 

 

3.5 Quantifying Relative Team Performance 

The process for deriving the ratings is simple.  

Firstly, the framework for obtaining a margin of 

victory in terms of runs is deployed, enabling 

meaningful score ratios to be obtained.  When the 

team batting first wins, or the team batting second 

wins on the last ball of the innings, the margin of 

victory is simply the difference between the total 

runs scored by each team (setting team total minus 

the chasing team total).  If the team batting second 

wins with one or more balls remaining in the 

innings, then an adjusted final total is required.   The 

projections are based on the resources, wickets and 

overs, that the chasing team has left at the 

completion of their innings. The data to derive these 

resource variables are readily available from 

scorecards which are readily available from several 

online data sources, for example: www.crichq.com, 

www.espncricinfo.com & www.cricketarchive.com.  

This information is used to calculate the proportion 

of resource consumed at the time of victory using a 

proprietary algorithm.  The adjusted final total is 

then the observed final total divided by the resources 

consumed, which is our projection of what the 

chasing team would have scored had victory not 

ended the match.    

     The process described by Bracewell et al. (2009) 

is used to quantify the relative performances 

between competing teams.  First, the totals are 

transformed to rugby-type scores.  This is achieved 

by subtracting a constant, then applying a natural log 

transformation with linear scaling applied.  This 

process is data driven to cater for different 

competitions and formats.  Then the score ratio for 

each match is obtained, calculated as the final 

transformed total of the team batting first (T1) 

divided by the sum of transformed runs scored in the 

match (T1 + T2); where T2 is the transformed final 

adjusted total of the team batting second.   

     These ratios are then input into the rating 

algorithm.  For domestic cricket, previous results 

from  approximately one year and one month are 

considered (380 days).  For international cricket 

where matches are more sparse, almost twice this 

range is examined (approximately 2 years and 2 

months or 800 days). 

     In a departure from the rating algorithm 

described above, the raw ratings obtained were 

regressed against the winning percentages in order to 

derive a linear transformation that would increase 

the spread of the ratings between 0 and 1.  The other 

consequence of this step was to create a rating that 

had a more natural interpretation, in that a team with 

a transformed rating of 0.7 tended to have a winning 

percentage of 70%.  An index type measure was 

created by multiplying the transformed rating by 

1000.  
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4. VALIDATING RATING PERFORMANCE 

 

To validate the performance based rating system for 

limited overs cricket the team ratings are compared 

to the ICC ratings, produced by cricket's governing 

body. 

 

4.1 Comparison with ICC ODI Ratings 

Cricket's governing body, the International Cricket 

Council (ICC) regularly updates and publishes 

ratings for the three major forms of international 

cricket (T20, ODI and Test).  A detailed explanation 

of the ratings can be found at several sources (e.g. 

ICC, 2014; Daud, 2013).  In the graph below we 

compare the month end ICC ODI Ratings from 

January 2000 to March 2014 for the top 10 teams 

plotted against our corresponding team rating 

(Australia, England, New Zealand, India, Sri Lanka, 

West Indies, Pakistan, Bangladesh, Zimbabwe and 

South Africa). We can see clearly that the two 

ratings are correlated (r=0.91), indicating our 

approach is valid. As the ICC ratings are credible, it 

is important that our rating is highly correlated. We 

would not expect the relationship to be perfect 

because of the difference in methods, but the general 

movements of teams rating over time should be 

similar.  

 

 
 

Figure 2: Scatter Plot of ICC ODI team ratings 

versus performance based team ratings. 

 The evolution of ratings of time is shown in the 

graph below.  Figure 3 shows the ICC ratings over 

time for Australia as well as the team performance 

rating, which has been arbitrarily scaled for display 

purposes. 

 
Figure 3: Line plot of ICC ODI team ratings overlaid 

with performance based team ratings for January 

2000 to March 2014. 

 

In the line plot above the two lines which represent 

the Australian cricket team's rating over the last 

decade appears to follow the same general slow 

upward or downward movement. The team 

performance rating is more variable, which is likely 

to be a result of the different methods of calculation 

for our rating compared to the ICC rating. The ICC 

rating also only drops games once a year (since 2012 

start of every May, previously August), where they 

drop the oldest year worth of data and then begin 

adding all the new games as they happen.  

Consequently, for most of the year the monthly ICC 

rating will be based on a larger number of games 

than the previous month and therefore, it will be less 

variable. The team performance ratings are based on 

a set number of days.  For comparison purposes, this 

means at the end of each month the oldest data 

month of data is dropped, and the most recent month 

of data added.    

 

5. CONCLUSION 

This paper has outlined a method for creating 

performance based team ratings by adapting 

approaches that have previously been explored in the 

sport statistics literature.  The two key components 

for this were: a method for forecasting runs, and an 
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algorithm for assigning ratings to team performance.  

The major contribution of this paper is the 

evaluation of victory in a cricket match as runs, 

irrespective if the team batted first or second.   

     A proprietary algorithm was used to forecast 

what a winning chasing team may have scored if 

they had continued to bat on once victory had been 

achieved; However, the approach used is 

philosophically the same as Duckworth and Lewis 

(1998) and Jayadevan (2002) where forecasted score 

totals are based on batting resources, wickets and 

overs, remaining.  The distribution of margin of 

victory results for victorious chasing teams was not 

statistically significantly different from the 

corresponding distribution when teams batting first 

won.  This indicated that no systematic bias, based 

on batting first or second, was introduced to our 

evaluation of the magnitude of victory.  

     A ratings algorithm that used score ratios 

(Bracewell et al., 2009) was then used to calculate 

ratings for defined time frames.  An area for future 

research is investigating the applicability of different 

types of rating methods. 

     The performance of the ratings was validated by 

comparing with the ratings produced by cricket's 

governing body, the ICC.  A correlation of 0.91 

indicated that the team ratings created by the 

proposed performance based rating system for 

limited overs cricket is valid. Importantly, a range of 

limited over formats are covered by this approach.  

Additionally, the high correlation between the ICC 

ratings and the performance based team ratings 

indicate that the extrapolation of runs in the second 

innings provides meaningful results and that the 

rating algorithm used is suitable. 

     The consequence is a more meaningful way of 

comparing and tracking results which is useful for 

coaching and development purposes which can 

extend to assess player impacts on results. 
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Abstract 
 

The prediction of future athletic performance is a recurring theme as sports scientists strive to understand the 

predicted limits of sports performance. Predictive models based on Olympic data for athletics have derived 

some accurate predictions of performance in the 2000, 2004, 2008 and 2012 Olympic Games. The aim of this 

research was to develop predictive models using performance data of the first three athletes competing in the 

finals of the men’s shot put, discus, hammer and javelin at the Summer Olympic Games from Berlin 1936 to 

London 2012. The approach utilised regression-curve estimation using IBM SPSS Statistics Version 22 

statistical software and by evaluating fit to linear, logarithmic, inverse, quadratic, cubic, compound, power, 

sigmoidal, growth exponential and logistic functions. The mathematical models varied represented very good 

predictors of past, current future throws performance in the four field events based on R
2
 (0.850 - 0.972), p-

values (<.001) and unstandardized residuals or error. The non-linear function of best fit for events was the 

cubic function, which indicated a decrease in performance in recent Olympics and predicted this performance 

decline would occur at the 2016 Olympic Games in Rio de Janeiro. The reasons for the current and predicted 

declines were more vigilance concerning drugs in sport and therefore dampening the enhanced performance 

effect of anabolic androgenic hormones, fewer athletes are undertaking the throwing events as a completive 

sport and changes in the source population providing the sample of potential throws athletes in Australia in 

terms of motor fitness abilities are getting smaller in terms of motor fitness abilities and thus fewer capable 

athletes exist to select from within source population. The good predictive models may be due to a longer 

timeframe data set to develop substantive predictive models, a timeframe able to detect phylogenetic trends in 

human athletic performance. The predictions may indicate a slightly modified Olympic motto from citius, 

altius, fortius to citius, altius and infirmius or “faster, higher and weaker?”  

Keywords: Olympic Games, Throwing Event, curve estimation, nonlinear regression, predictive 

                  mathematical modelling  
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1. INTRODUCTION 

The prediction of future athletic performance by 

athletes at the Olympic Games is a recurring theme 

as well as forming the basis for some stimulating 

discussions on the limits of human performance. 

Mathematics in sport and exercise and sports science 

are based on the principles of description and more 

importantly prediction. The ability to make 

substantive and accurate predictions of future elite 

level sports performance indicates that such 

approaches reflect substantive sport science. Often 

these predictions are purely speculative and are not 

based upon any substantial evidence, rather they are 

based on the belief that records are made to be 

broken and that performances based on past 

experiences must continue to improve over time. 

The accessibility of data in the form of results from 

Olympic Games, world records and world best 

performances in a specific year allows the analysis 

of performances in any number of events. From 

these analyses, changes in performance over time 

can be observed and predictions of future 

performance can be made utilising the process of 

mathematical extrapolation and interpolation.  

A number of researchers have attempted to predict 

future performances by deriving and applying a 

number of mathematical statistical models based on 

past performances in athletics. Prendergast (1990) 

applied the average speeds of world record times to 

determine a mathematical model for world records. 

The records or data used in the analysis spanned a 

10 year period. Following his analysis, Prendergast 

(1990) raised the question of whether any further 

improvements can be expected or if the limits of 

human performance have been reached. The sports 

of athletics (Heazlewood and Lackey, 1996; 

Heazlewood, 2011, 2013a, 2013b) and swimming 

(Lackey and Heazlewood, 1998) have been 

addressed in this manner. The knowledge of future 

levels of sporting performance has been identified 

by Banister and Calvert (1980) as beneficial in the 

areas of talent identification, both long and short 

term goal setting, and training program development 

based on the next level of expected future 

performance. In addition, expected levels of future 

performance are often used in the selection of 

national representative teams where performance 

criteria are explicitly stated in terms of athletics 

times and distances for example as required entry 

standards at Olympic Games (International Olympic 

Committee (IOC), 2014).  

Péronnet and Thibault (1989) postulate that some 

performances, such as the men's 100m sprint is 

limited to the low 9 seconds, whereas, Seiler 

(referred to by Hopkins, 2000) envisages no limits 

on improvements based on data reflecting 

progression of records over the last 50 years. 

According to Seiler improvements per decade have 

been approximately 1% for sprinting, 1.5% for 

distance running, 2-3% for jumping, 5% for pole 

vault, 5% for swimming and 10% for skiing for male 

athletes, whereas female sprint times may have 

already peaked. The differences for males and 

females it is thought to reflect the impact of 

successful drugs in sport testing on females. 

Previous derived curve estimations that significantly 

fit the data have also displayed interesting findings 

as no one curve fits all the data sets. Different events 

displayed different curves or mathematical functions 

(Lackey & Heazlewood, 1998) of best fit. In 

swimming the men’s 50m freestyle was inverse, 

100m freestyle compound, 200m sigmoidal, and the 

400m and 1500m freestyle cubic.  

In athletics for the men’s events the mathematical 

functions (Heazlewood and Lackey, 1996) were 

100m inverse, 400m sigmoidal, long jump cubic and 

the high jump displayed four functions (compound, 

logistic, exponential and growth). The curves that fit 

the data have also displayed interesting findings as 

no one curve fits all the data sets. This may indicate 

that different events are dependent upon different 

factors that are being trained differently or factors 

underpinning performance evolving in slightly 

different ways. This has resulted in different curves 

or mathematical functions that reflect these 

improvements in training or phylogenetic changes 

over time. However, at some point in the future 

when time catches-up with the actual performance, 

then how accurately the predictive models reflect 

reality can be assessed.  

However, the ability to predict performances at the 

2000, 2004, 2008 and 2012 Olympic Games for the 

men’s 100m, 400m, long jump and high jump, based 

on the 1924 to 2012 data, was very accurate with 

low percentage error. The International Olympic 

Committee (IOC, 2014) has produced descriptive 

data and descriptive graphical analysis to indicate 

trends in World records for the men’s throwing 

events however not based on mathematical 

predictive modelling. 

The dominant and important research question is, 

can mathematical models based on nonlinear curve 

estimation, which have proven to be very successful 

in fitting and predicting past, current and future 

Olympic performances for event finals in athletics 

and swimming for men display equal effectiveness 

in predicting athletic performances in the men’s 

throwing events of the shot put, discus, hammer and 

javelin at the Olympic Games, which are past, 

current and future performances? 
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2. METHODS 

 

The mean score for the first three placed finalist in 

the men’s throwing events which consist of the shot 

put, discus, hammer and javelin. The data were 

selected from 1936 to 2012 Summer Olympic 

Games and provided by the International Olympic 

Committee (IOC, 2014) served as the exemplars for 

performance in each event for each competitive 

year. The data covered eighteen Summer Olympics. 

These scores served as the data set to derive and test 

predictive models based on curve estimations and 

the distances in each event was recorded metres to 

the nearest centimetre.   

This is a similar method used previously 

(Heazlewood & Lackey, 1998; Heazlewood, 2006, 

2008, 2013a, 2013b) to curve fit Olympic data for 

swimming and athletic events. According to Garson 

(2010) curve estimation is an exploratory tool in 

model building and model selection, where the best 

mathematical model or function is selected to 

represent quantitative relationships between an 

independent/predictor variable and a 

dependent/response variable. The mathematical 

solutions and curve estimations were derived using 

the IBM SPSS Statistics Version 22 statistical 

software (SPSS Inc. 2014).     

The most common curve estimation or model fit 

approaches are based on the following mathematical 

functions (Garson, 2010) and these are linear, 

logarithmic, inverse, quadratic, cubic, power, 

compound, S-curve, logistic, growth, and 

exponential models. In terms of statistical approach 

model fit indices are then applied to test the quality 

of the model and the general method of determining 

the appropriate regression models is represented by 

the following steps.  

1. Commence with an initial estimated value for 

each variable in the equation.  

2. Generate the curve defined by the initial values. 

Calculate the sum-of-squares (the sum of the squares 

of the vertical distances of the points from the 

curve). 

3. Adjust the variables to make the curve come 

closer to the data points. There are several 

algorithms for adjusting the variables. The most 

commonly used method was derived by Levenberg 

and Marquardt (often called simply the Marquardt 

method). Adjust the variables again so that the curve 

comes even closer to the points. Keep adjusting the 

variables until the adjustments make virtually no 

difference in the sum-of-squares. 

4. Report the best-fit results and then the precise 

values you obtain will depend in part on the initial 

values chosen in step 1 and the stopping criteria of 

step 5. This means that repeat analyses of the same 

data will not always give exactly the same results. 

To investigate the hypotheses of model fit and 

prediction, the eleven regression models were 

individually applied to each of the athletic events. 

The regression equation that produced the best fit for 

each event, that is, produced the highest coefficient 

of determination (abbreviated as R
2
), was then 

determined from these eleven equations.  

5. The specific criteria to select the regression 

equation of best were the magnitude of R
2
, the 

significance of the coefficient of determination (R
2
) 

is a measure of accuracy of the model used.  A 

coefficient of determination of 1.00 indicates a 

perfectly fitting model where the predicted values 

match the actual values for each independent 

variable (Garson, 2010; Hair et al., 2006; Norušis, 

1993).  Where more than one model was able to be 

selected due to an equal R
2
, the simplest model was 

used under the principle of parsimony, that is, the 

avoidance of waste and following the simplest 

explanatory model, as well as the statistical 

significance of the analysis of variance, the alpha or 

p-value and size of residuals or error in predictions.  

6. Some caution is required to not over interpret a 

high R
2
 as it does not mean that the researcher has 

chosen the equation that best describes the data. It 

also does not mean that the fit is unique - other 

values of the variables may generate a curve that fits 

just as well. 

It should be noted the men’s. Shot, discus and 

hammer have not changed dramatically in 

specification concerning weight, area and volume 

making comparisons across Olympic year possible. 

The men’s javelin specification was changed in 1 

April 1986; the men's javelin 800 grams was 

redesigned by the IAAF Technical Committee 

(International Association of Athletics Federations 

(IAAF), 2014) where the centre of gravity was 

moved 4 cm forward and the surface areas in front 

of, and behind the centre of gravity were reduced 

and increased, respectively. The effect was to reduce 

lift and increase the downward pitching moment 

resulting in bringing the nose down earlier and 

reducing flight distance by around 10% but causing 

the javelin head to stick in the ground more 

consistently. 

 

 

3. RESULTS 

 

The results as illustrated in table 1 indicates each 

men’s throwing events, best-fit functions, r-square, p-

value and equations of best fit. Note all the eleven 
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mathematical functions that were tested for model fit. 

Specifically, these are linear, logarithmic, inverse, 

quadratic, cubic, power, compound, growth, S-curve, 

logistic and exponential models. It can be observed 

that all nonlinear functions of best fit were for the 

cubic function across all men’s throwing events. This 

indicated a decline in performance in the more recent 

Olympic Games. Specifically, from 1988 onwards for 

the shot put, 2000 for discus, 1988 for hammer and 

1976-1980 for javelin. The decline in javelin 

performance actually commenced prior to the re-

specified javelin entering competition at the 1988 

Olympic.  
 

Table 1. Men’s Throwing Events, Best-fit Functions, R-

square, P-value and Equations. 
Event 

and 

Weight 

Function  R-

Square 

p-

value 

Cubic Equation of Best Fit  

 

Constant   b1       b2       b3  

Shot Put  

7.26kg 

Cubic  .965 <.001  -3.336   3.137  -.131    .002 

Discus     

2kg 

Cubic .972 <.001   5.211   6.746  -.236     .003 

Hammer  

7.26kg 

Cubic .922 <.001  30.876  1.704    .141  -.005 

Javelin     

800g  

Cubic .850 <.001 -14.604 13.944  -.617   .009 

 

Figure 1. The cubic function line of best fit and actual data 

point for men’s discus. Note the X-axis in years and Y-axis 

in metres.   

To highlight the trends the cubic function line of best fit and 

actual data points for men’s discus from 19936-2012 are 

displayed in figure 1, which covers eighteen Summer 

Olympic Games. Table 2 indicates the model fit based on 

each Olympic year, actual performance, predicted 

performance and residual error. 

Table 2. Men’s Discus Data in terms of Olympic year, actual 

performance, predicted performance and residual error. 

Year Performance 

(m) 

Predicted 

(m) 

Residual Error 

(m) 

1936 

1948 

1952 

1956 

1960 

1964 

1968 

1972 

1976 

1980 

1984 

1988 

1992 

1996 

2000 

2004 

2008 

2012 

49.69 

51.78 

54.03 

55.19 

58.12 

60.34 

63.59 

63.77 

66.47 

66.45 

66.12 

67.89 

64.73 

67.27 

68.66 

67.86 

68.14 

68.16 

47.14 

53.66 

55.57 

57.35 

58.99 

60.50 

61.88 

63.12 

64.23 

65.21 

66.05 

66.75 

67.32 

67.76 

68.06 

68.22 

68.25 

68.14 

2.54 

-1.88 

-1.54 

-2.16 

-.87 

-.16 

1.70 

.64 

2.23 

1.23 

.06 

1.13 

-2.59 

-.49 

.59 

-.36 

-.11 

.019 

 

4. DISCUSSION 

 

The best fit mathematical functions for men’s 

throwing events were the cubic function with high 

R-square values (0.850-.972), very significant p-

values (<.001) resulting in good model prediction 

and low residual error. The shot put, discus and 

hammer where there were no re-specifications for 

the implements predicted performance decrements 

for these events and which had started to occur from 

1988 onwards for the shot put, 2000 for discus, 1988 

for hammer and 1976-1980 for javelin. It is 

interesting to note the world records for the shot put 

occurred in 1990 at 23.12m, discus 1986 at 74.08m, 

hammer in 1986 at 86.74m and javelin in 1996 at 

98.48m. The change in specifications of the men’s 

javelin in 1986 would suggest a significant decline 

in performances however the decline as suggested 

by this analysis commenced in 1976-1980 and prior 

the new javelin being introduced?  

   So what plausible explanations can be theorized 

for the current trend of declining throwing 

performance? What will occur in 2016 Rio de 

Janeiro Summer Olympic Games in Brazil and are 

we getting citius, altius and fortius or “faster, higher, 

and stronger?” if the throwing events are based on 

strength, force and power production the future 

trends based on table 3 indicates reductions in all 

men’s throwing events and might this indicate citius, 

altius and infirmius or “faster, higher, and weaker?” 

 
Table 3. The predicted trends for the shot put, discus, 

hammer and javelin performances for the 2016 Summer 

Olympic Games. 
 

Event and Weight 
Actual/Predicted  

2012 

Predicted Performance 

2016 

Shot Put  7.26kg 
21.66m/21.29m 21.27m 

Discus     2kg 
68.16m/68.14m 67.89m 

Hammer  7.26kg 
79.55m/80.27m 79.51m 

Javelin     800g 
84.40m/84.97m 83.67m 
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Three predominant explanations can provide some 

insights as to these declining trends in the men’s 

throwing events. Specifically, 

1. More vigilance concerning drugs in sport 

therefore dampening the enhanced performance 

effect of anabolic androgenic hormones. Drug 

testing by the IAAF is now undertaken in 

competition testing and out of competition testing 

and to have a world record ratified by the IAAF the 

application form has a section indicating the athlete 

was drug tested at the time of competition and that 

the athlete has passed the test, that is no adverse 

findings (IAAF, 2014). The normal suspension/ban 

for first offence anabolic androgenic hormones is 

two year. A second offence of this kind results in a 

life ban. If found positive all performances, monies 

paid by IAAF, awards and prizes are forfeit so the 

punitive outcomes can very significant and are 

thought to act as a strong deterrent to taking 

prohibited substances on the World Anti-Doping 

Agency (WADA, 2014) list.   

2. Fewer athletes are undertaking the throwing 

events. In Australia fewer athletes are taking up 

throwing events as other sports compete for the 

limited talent pool based on Australia’s small 

population. The Athletics Australia data of permit 

competitions and ranked athletes performances to be 

evaluated each Athletic season and indicate that in 

Australia this is a problem Athletics Australia 

(2014).   

3. The source population providing the sample of 

potential throws athletes in Australia in terms of 

motor fitness abilities is getting smaller in terms of 

motor fitness abilities and thus fewer capable 

athletes to select from within source population. 

This appears to be a result of Australia’s increasing 

overweight and obesity epidemic for males 18 years 

and over, which is currently estimated at 2011-12 to 

be 70% and females at 56% (ABS, 2014). The age 

of male high performance throwers is usually 

between 20-35 years. These overweight/obesity rates 

have increased by five and six percent respectively, 

when compared to the 1995 results. “People being 

overweight or obese may have significant health, 

social and economic impacts, and is closely related 

to lack of exercise and to diet,” (ABS, 2014). The 

carry-over effect is reduced motor fitness of which 

strength is a component and as a consequence 

reduced performances. 

 

5. CONCLUSIONS 
 

The predictions may indicate a slightly modified 

Olympic motto from citius, altius and fortius to 

citius, altius and infirmius or “faster, higher and 

weaker?” Predicting performances of athletes at 

future Olympic Games based on past Olympic Game 

performances for the four Athletic throwing events 

indicates good predictions, if somewhat 

disconcerting in term of the predicted declines in 

performance across all these event. It is important to 

highlight these declines might be attributable to 

three factors, that are, more vigilant drug testing, 

punitive sanctions for adverse drug tests, the decline 

in participation in the throwing events and finally a 

decline in the general motor fitness, especially 

strength in the source population from which 

throwing athletes will emerge.    
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Abstract 
 

The prediction of future athletic performance is a recurring theme as sports scientists strive to understand the 

predicted limits of sports performance. Predictive models based on Olympic data for athletics have derived 

some accurate predictions of performance in the 2000, 2004, 2008 and 2012 Olympic Games. The aim of this 

research was to develop predictive models using performance data of the first three athletes competing in the 

finals of the women’s shot put, discus, hammer and javelin at the Summer Olympic Games from Berlin 1936 

to London 2012. The approach utilised regression-curve estimation using IBM SPSS Statistics Version 22 

statistical software and by evaluating fit to linear, logarithmic, inverse, quadratic, cubic, compound, power, 

sigmoidal, growth exponential and logistic functions. The mathematical models varied represented very good 

predictors of past, current future throws performance in the four field events based on R
2
 (0.850 - 0.972), p-

values (<.001) and unstandardized residuals or error. The non-linear function of best fit for events was the 

cubic function, which indicated a decrease in performance in recent Olympics and predicted this performance 

decline would occur at the 2016 Olympic Games in Rio de Janeiro. The reasons for the current and predicted 

declines were more vigilance concerning drugs in sport and therefore dampening the enhanced performance 

effect of anabolic androgenic hormones, fewer athletes are undertaking the throwing events as a completive 

sport and changes in the source population providing the sample of potential throws athletes in Australia in 

terms of motor fitness abilities are getting smaller in terms of motor fitness abilities and thus fewer capable 

athletes exist to select from within source population. The good predictive models may be due to a longer 

timeframe data set to develop substantive predictive models, a timeframe able to detect phylogenetic trends in 

human athletic performance. The predictions may indicate a slightly modified Olympic motto from citius, 

altius, fortius to citius, altius and infirmius or “faster, higher and weaker?”  

Keywords: Olympic Games, Throwing Event, curve estimation, nonlinear regression, predictive 

                  mathematical modelling  
 

 

 



 

55 

1. INTRODUCTION 

The prediction of future athletic performance by 

athletes at the Olympic Games is a recurring theme 

as well as forming the basis for some stimulating 

discussions on the limits of human performance. 

Mathematics in sport and exercise and sports science 

are based on the principles of description and more 

importantly prediction. The ability to make 

substantive and accurate predictions of future elite 

level sports performance indicates that such 

approaches reflect substantive sport science. Often 

these predictions are purely speculative and are not 

based upon any substantial evidence, rather they are 

based on the belief that records are made to be 

broken and that performances based on past 

experiences must continue to improve over time. 

The accessibility of data in the form of results from 

Olympic Games, world records and world best 

performances in a specific year allows the analysis 

of performances in any number of events. From 

these analyses, changes in performance over time 

can be observed and predictions of future 

performance can be made utilising the process of 

mathematical extrapolation and interpolation.  

A number of researchers have attempted to predict 

future performances by deriving and applying a 

number of mathematical statistical models based on 

past performances in athletics. Prendergast (1990) 

applied the average speeds of world record times to 

determine a mathematical model for world records. 

The records or data used in the analysis spanned a 

10 year period. Following his analysis, Prendergast 

(1990) raised the question of whether any further 

improvements can be expected or if the limits of 

human performance have been reached. The sports 

of athletics (Heazlewood and Lackey, 1996; 

Heazlewood, 2011, 2013a, 2013b) and swimming 

(Lackey and Heazlewood, 1998) have been 

addressed in this manner. The knowledge of future 

levels of sporting performance has been identified 

by Banister and Calvert (1980) as beneficial in the 

areas of talent identification, both long and short 

term goal setting, and training program development 

based on the next level of expected future 

performance. In addition, expected levels of future 

performance are often used in the selection of 

national representative teams where performance 

criteria are explicitly stated in terms of athletics 

times and distances for example as required entry 

standards at Olympic Games (International Olympic 

Committee (IOC), 2014).  

Péronnet and Thibault (1989) postulate that some 

performances, such as the men's 100m sprint is 

limited to the low 9 seconds, whereas, Seiler 

(referred to by Hopkins, 2000) envisages no limits 

on improvements based on data reflecting 

progression of records over the last 50 years. 

According to Seiler improvements per decade have 

been approximately 1% for sprinting, 1.5% for 

distance running, 2-3% for jumping, 5% for pole 

vault, 5% for swimming and 10% for skiing for male 

athletes, whereas female sprint times may have 

already peaked. The differences for males and 

females it is thought to reflect the impact of 

successful drugs in sport testing on females. 

Previous derived curve estimations that significantly 

fit the data have also displayed interesting findings 

as no one curve fits all the data sets. Different events 

displayed different curves or mathematical functions 

(Lackey & Heazlewood, 1998) of best fit. For the 

women’s freestyle events the 50m was inverse, 

100m cubic, 200m sigmoidal, 400m cubic and 800m 

sigmoidal.    

In the women’s events the mathematical functions 

were 100m cubic, 400m sigmoidal, long jump 

inverse and high jump displayed four functions 

(compound, logistic, exponential and growth). The 

curves that fit the data have also displayed 

interesting findings as no one curve fits all the data 

sets. This may indicate that different events are 

dependent upon different factors that are being 

trained differently or factors underpinning 

performance evolving in slightly different ways. 

This has resulted in different curves or mathematical 

functions that reflect these improvements in training 

or phylogenetic changes over time. However, at 

some point in the future when time catches-up with 

the actual performance, then how accurately the 

predictive models reflect reality can be assessed.  

However, the ability to predict performances at the 

2000, 2004, 2008 and 2012 Olympic Games for the 

men’s and women’s 100m, 400m, long jump and 

high jump, based on the 1924 to 2012 data, was very 

accurate with low percentage error. The 

International Olympic Committee (IOC, 2014) has 

produced descriptive data and descriptive graphical 

analysis to indicate trends in World records for the 

women’s throwing events however not based on 

mathematical predictive modelling. 

The dominant and important research question is, 

can mathematical models based on nonlinear curve 

estimation, which have proven to be very successful 

in fitting and predicting past, current and future 

Olympic performances for event finals in athletics 

and swimming for women display equal 

effectiveness in predicting athletic performances in 

the women’s throwing events of the shot put, discus, 

hammer and javelin at the Olympic Games, which 

are past, current and future performances? 
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2. METHODS 

 

The mean score for the first three placed finalist in 

the women’s throwing events which consist of the 

shot put, discus, hammer and javelin. The data were 

selected from 1936 to 2012 Summer Olympic 

Games and provided by the International Olympic 

Committee (IOC, 2014) served as the exemplars for 

performance in each event for each competitive 

year. The data covered eighteen Summer Olympics 

for the women’s discus and javelin. The introduction 

of women’s throwing at the Summer Olympic 

Games events lagged behind the men. Specifically, 

the discus and javelin were introduced in 1932, the 

shot put in 1948 and the hammer as late as 2000. 

These scores served as the data set to derive and test 

the predictive models based on curve estimations 

and the distances in each event was recorded metres 

to the nearest centimetre. The analysis of the 

women’s hammer data proved problematic as it has 

only been competed at four Olympics, whereas the 

shot put has a longer completion history at seventeen 

Olympics.  

This is a similar method used previously 

(Heazlewood & Lackey, 1998; Heazlewood, 2006, 

2008, 2013a, 2013b) to curve fit Olympic data for 

swimming and athletic events. According to Garson 

(2010) curve estimation is an exploratory tool in 

model building and model selection, where the best 

mathematical model or function is selected to 

represent quantitative relationships between an 

independent/predictor variable and a 

dependent/response variable. The mathematical 

solutions and curve estimations were derived using 

the IBM SPSS Statistics Version 22 statistical 

software (SPSS Inc. 2014).     

The most common curve estimation or model fit 

approaches are based on the following mathematical 

functions (Garson, 2010) and these are linear, 

logarithmic, inverse, quadratic, cubic, power, 

compound, S-curve, logistic, growth, and 

exponential models. In terms of statistical approach 

model fit indices are then applied to test the quality 

of the model and the general method of determining 

the appropriate regression models is represented by 

the following steps.  

1. Commence with an initial estimated value for 

each variable in the equation.  

2. Generate the curve defined by the initial values. 

Calculate the sum-of-squares (the sum of the squares 

of the vertical distances of the points from the 

curve). 

3. Adjust the variables to make the curve come 

closer to the data points. There are several 

algorithms for adjusting the variables. The most 

commonly used method was derived by Levenberg 

and Marquardt (often called simply the Marquardt 

method). Adjust the variables again so that the curve 

comes even closer to the points. Keep adjusting the 

variables until the adjustments make virtually no 

difference in the sum-of-squares. 

4. Report the best-fit results and then the precise 

values you obtain will depend in part on the initial 

values chosen in step 1 and the stopping criteria of 

step 5. This means that repeat analyses of the same 

data will not always give exactly the same results. 

To investigate the hypotheses of model fit and 

prediction, the eleven regression models were 

individually applied to each of the athletic events. 

The regression equation that produced the best fit for 

each event, that is, produced the highest coefficient 

of determination (abbreviated as R
2
), was then 

determined from these eleven equations.  

5. The specific criteria to select the regression 

equation of best were the magnitude of R
2
, the 

significance of the coefficient of determination (R
2
) 

is a measure of accuracy of the model used.  A 

coefficient of determination of 1.00 indicates a 

perfectly fitting model where the predicted values 

match the actual values for each independent 

variable (Garson, 2010; Hair et al., 2006; Norušis, 

1993).  Where more than one model was able to be 

selected due to an equal R
2
, the simplest model was 

used under the principle of parsimony, that is, the 

avoidance of waste and following the simplest 

explanatory model, as well as the statistical 

significance of the analysis of variance, the alpha or 

p-value and size of residuals or error in predictions.  

6. Some caution is required to not over interpret a 

high R
2
 as it does not mean that the researcher has 

chosen the equation that best describes the data. It 

also does not mean that the fit is unique - other 

values of the variables may generate a curve that fits 

just as well. 

It should be noted the women’s shot put, discus and 

hammer have not changed dramatically in 

specification concerning weight, area and volume 

making comparisons across Olympic year possible. 

Specifically, the shot is 4kg, discus 1kg, hammer 

4kg and javelin 600g.  

Similar to the men’s javelin, which was respecified 

in 1986, the women’s javelin was respecified in 

1999 to change its aerodynamics to reduce lift, 

increase the downward pitching moment, and to 

bring the nose down earlier, which reduced the flight 

distance by around 10%. Although it should be 

emphasised that prior to the 1999 respecification 

women were only throwing in the 66 - 71 metre 

range and not the 100 metre plus throws exhibited 

by the top male javelin throwers. 
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3. RESULTS 

 

The results as illustrated in table 1 indicates each 

women’s throwing events, best-fit functions, r-square, 

p-value and equations of best fit. Note all the eleven 

mathematical functions that were tested for model fit. 

It can be observed that all nonlinear functions of best 

fit were for the cubic function across all women’s 

throwing events with a significant quadratic function 

for the javelin and a non-significant value for the 

hammer due to the low number of cases. This 

indicated a decline in performance in the Olympic 

Games from 1988 onwards for the women’s shot put, 

discus and javelin. The hammer performances, like 

many new events, continue to improve.   
 

Table 1. Women’s Throwing Events, Best-fit Functions, 

R-square, P-value and Equations. 
Event 

and 

Weight 

Function  R-

Square 

p-

value 

Cubic Equation of Best Fit  

 

Constant   b1       b2       b3  

Shot Put  

4kg 

Cubic  .918 <.001  -6.609   2.653   -.064  .000     

Discus     

1kg 

Cubic .925 <.001  -1.064   5.209  -.035  -.003 

Hammer  

4kg 

Cubic 
Quadratic 

.973 

.972 

Ns  
n=4 

-200.5  20.052    -.360  .00 

Javelin     

600g  

Cubic 
Quadratic 

.983 

.983 

<.001 -.647     5.491  -.070  - .002 

 
Figure 1. The cubic function line of best fit and actual data 

point for women’s javelin. Note the X-axis in years and Y-

axis in metres.   

 

To highlight the trends the cubic function line of best fit and 

actual data points for women’s javelin from 19936-2012 are 

displayed in figure 1, which covers eighteen Summer 

Olympic Games. Table 2 indicates the model fit based on 

each Olympic year, actual performance, predicted 

performance and residual error. 

 

Table 2. Women’s Discus Data in terms of Olympic year, 

actual performance, predicted performance and residual 

error. 

Year Performance 

(m) 

Predicted 

(m) 

Residual Error 

(m) 

1936 

1948 

1952 

1956 

1960 

1964 

1968 

1972 

1976 

1980 

1984 

1988 

1992 

1996 

2000 

2004 

2008 

2012 

43.42 

43.81 

50.08 

51.51 

54.40 

58.62 

59.44 

62.12 

64.87 

67.57 

68.57 

70.76 

67.82 

66.15 

67.53 

67.21 

69.44 

66.54 

38.55 

48.32 

51.16 

53.78 

56.19 

58.39 

60.37 

62.13 

63.68 

65.02 

66.14 

67.04 

67.73 

68.20 

68.45 

68.49 

68.30 

67.90 

4.87 

-4.51 

-1.08 

-2.27 

-1.79 

.23 

-.93 

-.01 

1.19 

2.55 

2.43 

3.72 

.09 

-2.05 

-.92 

-1.28 

1.14 

-1.36 

 

4. DISCUSSION 

 

The best fit mathematical functions for women’s 

throwing events were the cubic function with high 

R-square values (0.918 - .983), very significant p-

values (<.001) resulting in good model prediction 

and low residual error, except for the new women’s 

hammer was nonsignificant due to low n of cases.  

The shot put and discus where there were no re-

specifications for the implements predicted 

performance decrements for these events. The 

respecified javelin also indicted performance 

decline. The declining performances started to occur 

from 1988 for shot, discus and javelin. The new 

event hammer has displayed continuous 

improvement from 2000-2012 and continued 

improvement is predicted into the future. It is 

interesting to note the world records for the shot put 

occurred in 1987 at 22.63m, discus in 1988 at 

76.80m, hammer in 2011 at 79.42m and expectantly 

in the javelin in 2008 at 72.28m. The change in 

specifications of the women’s javelin in 1999 would 

suggest a significant decline in performances 

however the decline as suggested by this analysis 

commenced in 1988 at the Olympic level and prior 

the new javelin being introduced.  

   So what plausible explanations can be theorized 

for the current trend of declining throwing 

performance? What will occur in 2016 Rio de 

Janeiro Summer Olympic Games in Brazil and are 

we getting citius, altius and fortius or “faster, higher, 

and stronger?” if the throwing events are based on 

strength, force and power production the future 

trends based on table 3 indicates reductions in all 

men’s throwing events and might this indicate citius, 

altius and infirmius or “faster, higher, and weaker 

except for the hammer?” 
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Table 3. The predicted trends for the women’s shot put, 

discus, hammer and javelin performances for the 2016 

Summer Olympic Games. 
 

Event and Weight 
Actual/Predicted  

2012 

Predicted Performance 

2016 

Shot Put  4kg 
20.47m/19.31m 18.59m 

Discus     1kg 
67.96m/64.54m 62.35m 

Hammer  4kg 
77.63m/77.46m 78.44m 

Javelin     600g 
66.54m/66.24m 64.61m 

 
Three predominant explanations can provide some 

insights as to these declining trends in the men’s 

throwing events. Specifically, 

1. More vigilance concerning drugs in sport 

therefore dampening the enhanced performance 

effect of anabolic androgenic hormones. Drug 

testing by the IAAF is now undertaken in 

competition testing and out of competition testing 

and to have a world record ratified by the IAAF the 

application form has a section indicating the athlete 

was drug tested at the time of competition and that 

the athlete has passed the test, that is no adverse 

findings (IAAF, 2014). The normal suspension/ban 

for first offence anabolic androgenic hormones is 

two year. A second offence of this kind results in a 

life ban. If found positive all performances, monies 

paid by IAAF, awards and prizes are forfeit so the 

punitive outcomes can very significant and are 

thought to act as a strong deterrent to taking 

prohibited substances on the World Anti-Doping 

Agency (WADA, 2014) list. It is interesting to 

emphasise the actual winner of the women’s shot put 

in London 2012 tested positive to an anabolic 

androgenic steroid and was subsequently 

disqualified.   

2. Fewer athletes are undertaking the throwing 

events. In Australia fewer athletes are taking up 

throwing events as other sports compete for the 

limited talent pool based on Australia’s small 

population. The Athletics Australia data of permit 

competitions and ranked athletes performances to be 

evaluated each Athletic season and indicate that in 

Australia this is a problem Athletics Australia 

(2014).   

3. The source population providing the sample of 

potential throws athletes in Australia in terms of 

motor fitness abilities is getting smaller in terms of 

motor fitness abilities and thus fewer capable 

athletes to select from within source population. 

This appears to be a result of Australia’s increasing 

overweight and obesity epidemic for males 18 years 

and over, which is currently estimated at 2011-12 to 

be 70% and females at 56% (ABS, 2014). The age 

of male high performance throwers is usually 

between 20-35 years. These overweight/obesity rates 

for women have increased by five and six percent 

respectively, when compared to the 1995 results. 

“People being overweight or obese may have 

significant health, social and economic impacts, and 

is closely related to lack of exercise and to diet,” 

(ABS, 2014). The carry-over effect is reduced motor 

fitness of which strength is a component and as a 

consequence reduced performances. 

4. The continued improvement in the women’s 

hammer normally occurs when a new event is 

introduced as athletes improve their technical 

understanding of the event combined with more 

event specific training. This observation is relevant 

when you consider the rapid improvements in the 

women’s pole vault when it was a new event.  

 

5. CONCLUSIONS 
 

The predictions may indicate a slightly modified 

Olympic motto from citius, altius and fortius to 

citius, altius and infirmius or “faster, higher and 

weaker” when interpreting the trends in the women’s 

shot put, discus and javelin. Predicting performances 

of athletes at future Olympic Games based on past 

Olympic Game performances for the shot put, discus 

and javelin Athletic throwing events indicates good 

predictions, if somewhat disconcerting in term of the 

predicted declines in performance across all these 

three event. Note the 2008 world record in the 

women’s javelin might be a data outlier and not 

representing the overall trend. It is important to 

highlight these declines might be attributable to 

three factors, that are, more vigilant drug testing, 

punitive sanctions for adverse drug tests, the decline 

in participation in the throwing events and finally a 

decline in the general motor fitness, especially 

strength in the source population from which 

throwing athletes will emerge. The increasing 

performance in the hammer probably indicates 

athletes are progressively mastering the technical 

and specific training demands of the new event.   
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Abstract 

The issue of ‘tanking’ is a growing trend in the National Basketball Association (NBA) and is often the topic 

of debate. ‘Tanking’ is when a team lose games on purpose in order to improve their draft position. Previous 

research has been conducted on the incentives teams have to win games under the current NBA weighted-

lottery system. The research has suggested that non-playoff bound teams do not have an incentive to win 

games under the current draft system, leading to the system being heavily criticised. With this in mind, the aim 

of this research was to implement a draft system that would reward non-playoff bound teams for winning 

games that are deemed to be ‘unimportant’ with respect to making the playoffs. The calculation of 

‘unimportance’ is based on the probability of a team making the playoffs after the completion of each game of 

the season. A variety of approaches were then examined to help derive a score for ‘unimportant’ and unlikely 

wins. The results found evidence that non-playoff bound teams would have an incentive to win games late in 

the season under this alternative draft system. As well as exploring incentives to win, we will explore the 

attractiveness of this system as well as evaluating past draft picks to examine the reward teams could have 

obtained under this alternative draft system. 

 

Keywords: NBA, Draft, Probability, Importance, Incentives 
 

 

1.INTRODUCTION 

The NBA draft system is designed to assist low 

ranked teams who are unable to qualify for the 

playoffs. The draft enables these teams to have the 

best opportunity to improve their roster by allowing 

them first choice of players entering the league. The 

current draft system uses a lottery to determine the 

first three draft selections with the remaining draft 

order being determined by the inverse final season 

standings. The fourteen teams who do not qualify for 

the playoffs are allocated a probabilistic chance of 

receiving the number one draft pick based on their 

end of season standing. This process is known as a 

weighted-lottery system. 

Whilst this process has been used since 1990, it has 

not always been met with great support from the 

public and media as the issue of ‘tanking’ has arisen. 

‘Tanking’ is when a team loses games on purpose in 

order to improve their lottery odds for the draft. This 

issue has arisen from the fact that a team must finish 

with the worst overall record in order to receive the 

highest odds in the lottery, and therefore the best 

opportunity of obtaining the number one draft 

selection. 

It is often a topic of debate about whether or not 

tanking is the only way to rebuild a team (Michael, 

2013; Spencer, 2013; Ziller, 2013), and in recent 

years has led the public and media to speculate about 

which teams could possibly tank during a season 

(Burton, 2013). However, Kertes (2003) explained 

how the Detroit Pistons used smart trading to bring 

in players who would assist the team in winning the 

2004 NBA Championship. Yet, since it may be 

difficult for teams to complete trades, teams may 

turn their attention back to the draft and thus the 

incentive to lose games becomes a factor. 

Research has been conducted in the past on the 

effect that tanking has on the league. Taylor and 

Trogdon (2002) assessed the performance of teams 

following changes to the draft system by the NBA. 

They found that under the current weighted-lottery 
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system, non-playoff bound teams are two times 

more likely to lose games compared to teams headed 

for the playoffs. Walter and Williams (2012) 

assessed the issue of tanking to determine if teams 

do tank and the benefit they may gain. By analysing 

games played between non-playoff teams late in the 

season, they found that non-playoff bound teams 

were more inclined to tank in order to improve their 

draft position. They also found that if a team wins 

the lottery and gains the first draft selection, the 

attendance will increase by 5% for a period of five 

years after the draft. The incentive to tank has also 

been explored by Tuck and Whitten (2012), who 

found evidence to suggest that teams will tank when 

the weighted-lottery system is used. 

An alternative draft system that has been suggested 

was first described by Gold (2010). Gold explained 

that it may be possible to create a draft system that 

eliminates the needs for teams to tank whilst giving 

fans a reason to continue to cheer for their team. The 

system used mathematical elimination to determine 

the draft order in the National Hockey League 

(NHL). After a team has been mathematically 

eliminated from the playoffs, their win/loss record 

was recorded and used to determine the selection 

order for the upcoming draft. The results found that 

supporters would have a reason to continue to cheer 

as their team was still competing for the number one 

draft late in the season. 

The issue of tanking is routinely discussed in the 

Australian Football League (AFL). This was 

identified by Bedford and Schembri (2006), who 

suggested a probabilistic model to give teams who 

have been eliminated from finals contention an 

incentive to win games late in the season. This 

system was based on measuring the unimportance of 

a game by altering the importance of a point formula 

described in Morris (1977). The system would 

allocate a Draft Point Reward (DPR) to non-finals 

teams who would win games that were deemed to be 

unimportant. The cumulative sum of the DPR, 

known as the DScore, was then used to determine 

the final draft order. The research concluded that 

non-finals bound teams had an incentive to win 

games late in the season as they were competing for 

the number one draft selection. Taking this into 

consideration, the focus of this paper is to implement 

the DScore system into the NBA and evaluate the 

incentives that non-playoff bound teams have to win 

games late in the season. 

 

2.METHODS 

In this section, the methodology behind the DScore 

system will be explained. In order for the system to 

be successfully implemented into the NBA, some 

adjustments were required. These adjustments are 

explained throughout this section. 

At its heart, the DScore system is designed to reward 

non-playoff bound teams for winning games late in 

the season that are deem to be ‘unimportant’. As 

mentioned before, the reward is in the form of a 

Draft Point Reward (DPR) with the team who 

finishes the season with the highest cumulative 

DPR, known as the DScore, receiving the number 

one draft selection. 

Like the original DScore system, the NBA system is 

based on Carl Morris’ work on the most important 

point in tennis (Morris, 1977). Morris defined the 

most important point in tennis as the difference 

between two conditional probabilities: the 

probability of a server winning a game given they 

win the next point, minus the probability of a server 

winning the game given they lose the next point. 

However, we are interested in games in a season 

instead of points in a game. The unimportance of a 

game is then found after calculating the importance 

of a game. 

The NBA DScore system has similar characteristics 

to the original system. These include no DPR being 

given in defeat so teams must win games in order to 

receive a reward; the DPR being awarded for the 

entire season minus the first game of the season; and 

teams that have qualified for the playoffs are 

ineligible to receive a reward. However, in the 

original system, the DPR for each team was 

calculated at the conclusion of each round of the 

season. This is not the case for the NBA system as 

there are no actual rounds in the season. Instead, the 

DPR is calculated for each team at the conclusion of 

each game g.  

In order for the DPR to be calculated, there are a 

number of features that have to be determined first. 

The process includes determining the conference 

standing after each game g, determining the required 

number of wins for each team to make the playoffs, 

calculating the probability of each team making the 

playoffs after each game, and finally determining the 

importance and unimportance of the games. 

 
i. Conference standings 

 

The original AFL DScore system used the ladder at 

the completion of round r to determine various 

features of the probabilistic model. As explained in 

the previous section, there are no actual rounds in 

the NBA so there are no conference standings 

available for all teams at the conclusion of game g. 

Instead, there are two conferences, the East and the 

West, with each conference having their own 

standings available at the conclusion of each day of 
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the season. To rectify this, hypothetical standings at 

the conclusion of game g for each conference were 

used. These standings were constructed similar to 

the normal standings but the total points differential 

was used as a tie-breaker for when two or more 

teams had the same win/loss record. 

 

ii. Number of wins to make the playoffs 

 

In the NBA, the top eight teams from each 

conference at the end of the season advance to the 

playoffs where they compete for the NBA 

championship. Since there is a top eight from each 

conference, the DScore system has to be split to 

accommodate this. Therefore, each conference 

would have its own required number of wins to 

make the playoffs. Bedford and Schembri (2006) 

explained that there were two possible ways of 

calculating the required number of wins to make the 

playoffs. This was either by using the final season’s 

required wins and imposing them retrospectively 

onto the completed season, or using a projected 

requirement during the season. Since the attraction 

of the system is that teams will know the reward of 

winning, the projected wins, or ParWins, is used 

during the season. The required number of wins for 

team i after game g is defined as ParWinsi (g). This 

is shown in (1).  

 

                 
   

               
       

 
           (1) 

 

The total number of wins for team i after the 

completion of game g is defined as TWi(g). Equation 

1 will return a result equal to zero if it finds that 

team i has already qualified for the playoffs. If this is 

not the case, the equation will return a positive 

number. It should be noted that this equation 

incorporates a rounding function which will round 

the projected total wins of the eighth placed team up 

or down to the nearest integer. 

 

iii. Probability of making the playoffs 

 

The basis behind determining the probability of team 

i making the playoffs is the binomial distribution. 

The probability of making the playoffs for team i 

after game g is defined as PRi (Playoffs |g). 

Incorporating the cumulative binomial distribution, 

with x= number of successes, n = number of trials 

and p = probability of success, the probability of 

making the playoffs is defined as: 

 

 

 

                
                 

                                                           

          (2) 

 

Note(2) includes an indicator function 1{a} which 

takes the value of 1 if condition a is true and 0 if 

condition a is not true. To keep the system simple, 

the probability of success used throughout this paper 

is equal to 0.5. 

 

iv. Unimportance of a game 

 

As stated previously, the unimportance of a game 

can be found after calculating the importance. The 

importance of a game is defined as the difference 

between two conditional probabilities: the 

probability of team i making the playoffs given they 

win the next game, minus the probability of team i 

making the playoffs given they lose the next game. 

This difference can be found by manipulating 

equation 2. The unimportance for team i after game 

g, defined as Ui(g), is then calculated by one minus 

the importance of the game. A detailed breakdown 

of the importance calculations can be found in 

Bedford and Schembri (2006). 

 

v. Moderator variable 

 

In the original AFL DScore system, it was 

concluded that there were some weaknesses to the 

model. These weaknesses included the top draft pick 

being frequently awarded to teams who won a string 

of games late in the season. This meant that teams 

who finished in positions ninth to twelfth received a 

majority of the high draft picks. To counteract this, 

Bedford and Schembri (2010) introduced a 

moderator variable to improve the system. This 

variable was a scaling factor, which would allocate 

the full DPR to teams positioned at the bottom of the 

conference standings. The conference standing for 

team i after the completion of game g is defined as 

CSi(g). The moderator variable is then defined as the 

following: 

 

                  
          

 
           (3) 

 

This equation will return a value equal to zero if it 

finds that team i is positioned in the top eight of their 

conference. If this is not the case, then it will return 

a value equal to team i’s conference standing minus 

eight divided by the number of teams not in the top 

eight. For example, if team i is positioned eleventh 

in their conference, then their scaling factor γ will be 
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equal to 
      

 
 = 0.429. This would then be 

multiplied onto the DPR for game g. 

 

vi. Calculating the Draft Point Reward 

 

The Draft Point Reward (DPR) is simply the 

probability of not making the playoffs multiplied by 

the unimportance of the game and the moderator 

variable. As mentioned previously, teams have to 

win in order to receive the reward so an indicator 

function is included in the equation. The DPR for 

team i at game g can then calculated using the 

following equation: 

 

                                                         (4) 

 

The total Draft Score (DScore) for team i after game 

g is then defined as the sum of all DPR: 

 

                    
 
                (5) 

 

3.RESULTS 

The DScore system was trialled on seven seasons 

between 2005 and 2012. The results will examine 

findings from these seasons and assess how teams 

performed during the 2008-09 season. The 

importance of games will be examined as well as the 

competition for the number one draft selection. 

As mentioned previously, the equal probability 

model (p=0.5) was used in the calculations of the 

DScores. Since the DScores from the two 

conferences had to be merged at the conclusion of 

the season to determine the draft order, it had to be 

confirmed that the two groups were equal. It was 

found that there was no significant difference 

between the two conferences (P=0.154). 

The results across the seasons showed that lower 

ranked teams generally benefit from the system as 

they receive a majority of the top five draft 

selections. This suggests that the system is working 

correctly and only allocating a reward to low ranked 

teams who win games of unimportance. The 

allocation of top five draft selections is shown in 

Figure 1. 

 
Figure 1: Distribution of Top 5 picks vs. 

Conference Position 

 
The ideal situation for the NBA DScore system 

would be to have lower ranked teams competing for 

the number one draft selection right up to the 

conclusion of the season. This would result in the 

teams continuing to have an incentive to win as 

many games as possible despite being eliminated 

from playoff contention. This competition for the 

top draft selection is shown in Table 1. In two of the 

seasons, there were at least two teams still 

competing for the first draft selection with one game 

remaining. However, in all seven seasons, there are 

at least two teams competing with five games 

remaining. This competition suggests that teams 

would have an incentive to continue to win games 

late in the season as there is a valuable reward 

available. 

 
 1 Game Remaining 5 Games Remaining 

 East West Total East West Total 

2005-06 0 2 2 0 3 3 

2006-07 0 1 1 0 2 2 

2007-08 0 1 1 0 2 2 

2008-09 1 1 2 1 2 3 

2009-10 0 1 1 0 2 2 

2010-11 0 1 1 0 3 3 

2011-12 0 1 1 0 2 2 

Table 1: Teams in Competition for Top Pick with 

1 and 5 games remaining 

 

i. East vs. West 

 

An interesting result that arose was that the highest 

DScore in each of the seven seasons came from a 

team from the Western conference. Of the 35 top 

five picks, only ten were awarded to teams from the 

East. This would suggest that the system is giving 

the Western conference a distinct advantage over the 

Eastern conference. However, this may not be the 

case when the total wins of each conference are 

assessed. In all but one season, teams from the West 
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won more combined games than the East. In Table 

2, the inter-conference wins (wins against teams 

from the other conference) for each conference 

across the seven seasons are shown. It can be seen 

that the West won more inter-conference games in 

all but one season. This result would explain why 

the West were awarded a majority of the picks as the 

DScore system is designed to reward winning and 

teams from the West are winning more games than 

teams from the East. 

 

 

 
 East West 

2005-06 198 252 

2006-07 193 257 

2007-08 192 258 

2008-09 231 219 

2009-10 204 246 

2010-11 189 261 

2011-12 114 156 

Table 2: Total number of inter-conference wins 

 

ii. 2008-09 NBA season 

 

The 2008-09 season presented the best possible 

example of the DScore system working successfully 

in the NBA. In this season, there were two teams 

competing for the number one draft selection with 

one game remaining. The teams were the 

Washington Wizards from the East and the 

Oklahoma City Thunder from the West. The game-

by-game results for the top six DScore teams can be 

found in Figure 2. 

 

 
Figure 2: Competition for top pick during the 

2008-09 NBA season 

 

Figure 2 shows the number one draft selection 

changing teams numerous times throughout the 

season, particularly at the beginning. At the 

conclusion of the season, the competition came 

down to Washington and Oklahoma City. There was 

also strong competition for the third overall pick, 

with just 0.2734 separating picks three to five. These 

results are similar to the original AFL DScore 

system, which showed at least two teams competing 

for the top pick with a number of teams also in 

competition for the third draft selection. 

 

iii. Importance 

 

An interesting result that arose from Bedford and 

Schembri (2006) was that teams who finished in the 

top two or bottom three had their most important 

games in the early rounds of the season. Of interest 

to us was whether or not this result would replicate 

in the NBA. In particular, of interest was comparing 

the importance between the two conferences. To 

complete this, the maximum importance was found 

for each team in each of the seven seasons. The 

game in which the maximum importance occurred 

was recorded along with each team’s end of season 

conference standing. The importance was then 

sorted according to the conference standing and the 

mean and standard deviation were found. The results 

are shown in Figure 3. 

 

 
Figure 3: Error bars for maximum game of 

importance by conference position 

 

A notable result from Figure 3 was that the top two 

teams in the East had their most important games 

within the first ten games of the season. This is 

different to the two top teams from the West, who 

had their most important games towards the halfway 

mark of the season. A more intriguing result is that 

the bottom teams in the West had their most 

important games at the commencement of the season 

compared to teams from the East, who’s occurred at 

the halfway mark of the season. These results 

suggest that if a team from the West loses too many 

games early in the season, then their probability of 

making the playoffs decreases dramatically as the 

required number of wins (ParWins) increases 

quickly as teams above them continue to win. It also 

suggests that bottom teams in the West had more 

unimportant games than the East throughout the 
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season. This would provide an explanation as to why 

teams from the West received a majority of the top 

five picks as they have more unimportant games and 

are winning more games than the East. It was also 

confirmed that the positions between the two 

conferences are significantly different (P<0.0000). 

 

4. DISCUSSION 

Thought it is difficult to measure the overall effect 

of the DScore system on the NBA, there is evidence 

to suggest that the system does eliminate the 

incentive for teams to tank. The results showed that 

there is competition for the number one draft 

selection in all seven seasons assessed, meaning that 

teams have to continue to strive for success even if 

they have been eliminated from playoff contention. 

However, it is difficult to determine how teams may 

have performed in later seasons if they had in fact 

been awarded an alternative draft selection under the 

DScore system. If players were selected in the same 

order as the 2008 NBA draft, then it could 

hypothetically be suggested that Derrick Rose now 

plays for Minnesota or Kevin Love now plays for 

Memphis. However, we cannot say this with 

confidence as we are unsure of how this system 

would have affected a team’s draft preparation and 

how it would affect which played is selected. 

One of the results that arose from the system was 

that there were multiple teams who would finish a 

season with a DScore equal to zero. This was 

because those teams spent all, or a majority, of the 

season in the top eight of their conference. Whilst 

this seems reasonable, it means that when 

determining the draft order, there were multiple 

teams with the same DScore. One of the ways that 

this could be amended is by using the inverse final 

season standings as a tie-breaker with the team who 

finished higher in the standings receiving the higher 

draft pick. An alternative tie-breaker would be to 

implement the current weighted-lottery system onto 

the fourteen highest DScore teams. 

i. Incentive to win 

The key idea about the implementation of the 

DScore system into the NBA was to eliminate the 

incentive to tank and replace it with an incentive to 

win. The results from the research have shown that 

the system creates an incentive for teams to continue 

to win despite having a reduced probability of 

making the playoffs. As explained in the results 

section of this paper, the number one draft pick was 

still undecided late in the 2008-09 season. Going 

into the final game of the season, Washington held a 

narrow lead over Oklahoma City. On the last day of 

the season, Oklahoma City defeated the Los Angeles 

Clippers by 41 points to claim the number one draft 

selection. Washington had an opportunity to reclaim 

the number one pick but lost to Boston by eight 

points. A win under the current weighted-lottery 

system would have awarded Washington the fourth 

highest lottery odds whilst a win under the DScore 

system would have awarded them the first draft 

selection. This further emphasises the point that non-

playoff teams do not have an incentive to win under 

the current NBA draft system whereas the teams 

would under the DScore system. 

Results from the implementation of the DScore 

system into the NBA have provided evidence that 

games played between lower-ranked teams late in 

the season can be as competitive as games played 

between playoff bound teams. This is evident by the 

strong competition for the third overall pick draft in 

the 2008-09 season. If teams had known that they 

were in competition with each other, then it is 

reasonable to assume that the games played between 

the teams would have had more meaning to them. 

Therefore, whilst teams at the top of the standings 

were competing for their playoff position, teams 

anchored at the bottom of the standings would be 

competing for a high draft position. 

 

ii. Criticism and future work 

 

A criticism that can be direct at the NBA DScore 

system is that teams from the Western conference 

appear to benefit more than teams from the Eastern 

conference. The results showed that teams from the 

West received all the number one draft selections 

available across the seasons. Whilst this appears to 

support the idea that the West is favoured by the 

system, it may not be the case when the total number 

of wins for each conference is assessed. In the 

results section, it was explained that teams from the 

West won more total games and more inter-

conference games than the East in six of the seven 

seasons. Lower-ranked teams from the West also 

had their most important games at the 

commencement of the season which results in the 

teams having more unimportant games. These two 

results coupled together suggest that the lower-

ranked teams from the West were winning more 

games of unimportance, and therefore receiving a 

high cumulative draft score than teams from the East. 

Whilst it is not ideal to have all the number one draft 

selections being awarded to the West, this may 

simply be a result of the NBA going through a 

period of time where the Western conference is 

stronger than the Eastern conference. 

Throughout the methodology, when the cumulative 

binomial distribution was used, the probability of 
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success was equal to 0.5 as this was seen as keeping 

the system simple. However, this may not accurately 

measure the probability that team i has to win game 

g. One way to improve this would be to alter the 

probability based on how team i is performing 

throughout the season. This could be done through 

prior probabilities, as described in Stefani and 

Clarke (1992). The use of prior probabilities could 

lead to an improvement in determining the 

probability of team i making the playoffs as the 

probability of success would reflect the relative skill 

of team i.  

In order to completely understand which teams truly 

benefit from the DScore system in the NBA, some 

simulation could be conducted in the future, as 

completed by Bedford and Schembri (2010). 

Simulating results for a season 100,000 times may 

give us compelling results about which conference 

position benefits the most from the system. The 

simulation could also provide us with information 

about if one conference has an advantage over the 

other. However, in order for this simulation to work 

correctly, the hypothetical standings would have to 

be adjusted to better reflect the actual standings. 

This would mean that tie-breakers such as division 

leaders or conference record would be used before 

the total points differential is assessed. 

 

5.CONCLUSION 

In this paper, an alternative draft system for the 

allocation of player draft selections in the NBA has 

been presented with the aim of eliminating the 

incentive for teams to tank. The draft system, known 

as the DScore system, was first created by Bedford 

and Schembri (2006) and was first trialled in the 

Australian Football League (AFL). The system is 

designed to reward non-playoff bound teams for 

winning games late in the season that are deemed to 

be ‘unimportant’. The unimportance of a game was 

measured by evaluating the probability of a team 

making the playoffs, given they win or lose their 

next match. Teams with a reduced probability of 

making the playoffs received a higher reward, 

known as the Draft Point Reward. The cumulative 

sum of the Draft Point Reward, known as the 

DScore, was then used to determine the final draft 

order. 

The implementation of the DScore system into the 

NBA provided promising results which included 

showing that teams would have an incentive to 

continue to win games despite being eliminated from 

playoff contention. Evidence was also found that 

games played between lower-ranked teams could be 

as competitive as games played between playoff-

bound teams late in the season. This is due to the 

fact that teams would be competing against each 

other late in the season for the highest DScore and, 

therefore, the number one draft selection. This 

competition creates the incentive for teams to win as 

many games as possible throughout the season. With 

this incentive, it means that teams have a reason to 

continue to strive for success and also provides 

supporters with a reason to continue cheering on 

their team despite being eliminated from playoff 

contention. 
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Abstract 

It is said that a picture tells a thousand words.  At an average of 25 frames per second, and given the ubiquitous 

nature of affordable and portable video cameras, video in sport should therefore be able to tell an incredible 

amount about performance.  Yet, in spite of the fact that a number of commercial providers have employed 

video-based ball and player tracking solutions for several years, the use of video tracking technologies remains 

in its infancy in Australia, and globally for most non-professional sports.  Furthermore, tracking players and 

balls in large stadia, equipped with sophisticated camera arrays, represents arguably the simplest environment in 

which to track moving objects.  Even so, continuous tracking of athletes and balls in team sports remains a 

significant challenge. 

 

Further to that, in applied sports science, video sources are frequently suboptimal as they may be from hand-

held cameras in competition, where other objects may occlude athletes, or visibility may be poor.  Dealing with 

noisy or challenging video data sets is a current area of focus in the broader field of computer vision, and our 

work makes use of state of the art methods for localizing athlete positions “in the wild”.  Our ambitious aim is to 

leverage useful performance profiling data from a wide range of unconstrained data sources.  In collaboration 

with a range of university partners, we have developed a suite of computer vision solutions for observing and 

measuring features of sport performance that are progressively becoming more robust, adaptable, mobile, 

timely, and ultimately informative. 

 

In this presentation, we will demonstrate the evolution in our video tracking methods from simple player 

position estimates using arrays of fixed cameras, to detecting swimmer stroke rates using hand-held and 

unconstrained video sources, as well as some emerging themes in action recognition and performance profiling. 
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Abstract 

Current methods for the classification of human movement rely on data collected from multiple sensors placed 

on different areas of the subject’s body, such as the wrist or hip. These methodologies, whilst proven to be 

accurate, are impractical in real world sporting applications as such placement of common wearable sensors is 

cumbersome and can introduce additional risk of injury. To overcome this we introduce a classification system 

based on data obtained from a single sensor worn between the shoulder blades. Tri-axial accelerometer and 

gyroscope data was collected from 76 participants at a frequency of 100 Hz. Each participant performed a total 

of eight distinct movements along a circuit, with brief pauses taken between movements to aid movement 

distinction. In this paper we use the statistical package R to explore a variety of extractable features which may 

be used in the classification process and evaluate them on their efficacy by using a combination of ANOVA 

and Lasso. Some of the features tested included; time domain features such as amplitude maxima and minima, 

as well as frequency domain features such as bandwidth and spectral density which are extracted by applying 

the Fourier Fast Transform (FFT). The selected features were then extracted from a sample of the data which 

were pre-processed using 0.5 second, 1 second, and 1.5 second sliding windows respectively, and then 

classified by using algorithms such as Random Forest, Support Vector Machines and Logistic Model Tree. 

The results of these classifications were then compared, on accuracy of classification and computation time. 

We will present the basis for our classification model including selection criteria for feature extraction as well 

as the results generated from said classifications. 

 

Keywords: Sport, Movement Classification, Tri-Axial Accelerometer, Feature Extraction, Fourier Fast 

Transform, Random Forest, Logistic Regression Tree, Support Vector Machine 
 

 

1. INTRODUCTION 

Objective measurement of human movement is 

essential for understanding the physical and 

technical demands related to sports performance 

(Aughey and Falloon, 2010). It is also important in 

evaluating the effectiveness of training programs 

designed to increase sports performance as well as 

those targeting both the prevention and rehabilitation 

of injury (Neville et al., 2010). Fundamental to 

furthering this understanding is the need to 

accurately collect specific information relating to the 

type, intensity and frequency of movements 

performed (Carling et al., 2009). Consequently, 

techniques for undertaking movement analysis in 

sports have improved substantially in recent years.  

A reason at least partially responsible for these 

improvements relates to the considerable 

developments that have occurred in wearable 

tracking device technologies. Wearable tracking 

devices that integrate multiple sensors (global 

positioning system (GPS), heart rate, accelerometer, 

gyroscope and magnetometer) into a single, versatile 

unit worn on the body are now readily available 

(Carling et al., 2009). To date, the majority of 

research has focused on the GPS sensors contained 

within these devices and their ability to measure 

basic components of human movement, such as 

speed, distance travelled, and the number of high-

intensity efforts (i.e., accelerations) (Cummins et al., 

2013). However, more recently it has been shown 

that a more detailed analysis of human movement 

can be obtained using the accelerometer sensor 

mailto:caseyjosman@gmail.com
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(Ermes et al., 2008). Specifically, different types of 

movements can be classified and distinguished 

based on their accelerometer features. 

Previous research have positioned these devices on 

different areas of the body, including the wrist (Long 

et al., 2009), upper back (Mitchell et al., 2013), chest 

(Ermes et al., 2008), shin (Muscillo et al., 2010), hip 

(Jeong et al., 2007), waist (Mathie et al., 2004), 

lower back (Bonomi et al., 2009) and feet (Zhang et 

al., 2003). However, in the majority of contact-based 

team sports, the upper-back is the only appropriate 

location an accelerometer can be positioned (when 

contained within a wearable tracking device). 

Specifically, a device worn on other parts of the 

body may have the potential to cause injury to the 

user or indeed other participants.  

Mitchell et al. (2013) recently proposed a method 

using a single accelerometer contained within a 

smartphone worn on the upper-back, with the aim of 

identifying seven different sporting movements 

(stationary, walking, jogging, sprinting, hitting a 

ball, standing tackle, dribbling a ball). In their study, 

an overall movement classification success rate of 

75% was achieved using classification approaches 

that included Support Vector Machine, Logistic 

Model Tree, and range of Neural 

Network/Optimization type classifier. 

However, with the aim of achieving higher accuracy 

rates, multiple inputs (i.e., both accelerometer and 

gyroscope) have also been considered in the 

literature (rather than a single accelerometer input 

alone). As the data acquired through the gyroscope 

provides essential information pertaining to the 

position of the body during human movement, it is 

not surprising to see both inputs combined to good 

effect previously Leutheuser et al., (2013).  

A range of different analysis approaches have also 

been used previously in accelerometer studies, with 

varying levels of success. Three analysis approaches 

of particular interest in this study are i) Logistic 

Model Tree (LMT), ii) Random Forest (RF) and iii) 

Support Vector Machine (SVM). Logistic Model 

Trees is a commonly used classification algorithm, 

which performs competitively with other classifiers 

and is easier to interpret (Landwehr et al., 2005). 

The LMT combines two complementary 

classification techniques: tree induction and linear 

regression (Hornik et al., 2009). Random Forest is a 

classification algorithm, which in its application 

grows multiple classification trees and builds upon 

them until each tree is at its largest (Breiman and 

Cutler, 2001). The RF has various useful features 

including high efficiency with large data sets, built 

in ensemble classifiers, and an inability to overfit 

models (Breiman and Cutler, 2001). Support Vector 

Machine is a classification algorithm, which 

attempts to find the best separating vector between 

two groups within a set of descriptors (Bennett and 

Bredensteiner, 2000). For classification of data with 

more than two groups the original problem is split 

into multiple binary problems which are then 

classified and compared, with the problem having 

the most votes per instance being assigned as the 

classifier (Meyer et al., 2014). 

The aim of this study was to determine whether data 

obtained from a wearable tracking device 

(specifically, gyroscope and accelerometer) can be 

used to identify team sport-related 

movements.  Guided by practical considerations and 

current literature herein we focus on 

classifying  difficult movements, explore 

classification methods that have been 

successful, consider  mix of  time and frequency 

domain features with varying window length and 

implement a simple ANOVA based methodology for 

filtering features. 

 

2. METHODS 

i. Participants 

 

Seventy-six (n=76) recreationally active, healthy 

male participants (age 24.4 ± 3.3 years; height 181.8 

± 7.5 m; mass 77.4 ± 11.6 kg; mean ± SD) were 

recruited for participation in the study. All 

participants were regular competitors in one or more 

contact-based team sport events per week at the time 

of testing (Singh et al., 2010). All participants gave 

informed consent following full disclosure of the 

study protocol and procedures.  

 

ii. Experimental Design 

 

Participants were required to perform a range of 

movements commonly undertaken in contact-based 

team sports in a simulated team sport circuit. The 

research design allowed for the assessment of 

multiple team-sport specific movements in a 

confined space.  Details of the circuit design are 

presented in the next sub-section. 

During each trial participants wore a single, 

wearable tracking device (Minimax S4, Catapult 

Innovations, Australia), which contained a 100 Hz 

tri-axial accelerometer, gyroscope, and other devices 

not utilised for this study. The device weighed 67 

grams, was 88 × 50 × 19 mm in dimension and was 

worn in a tightly fitted manufacturer supplied 

harness with the units located below the neck, in-line 

with the spine (superior to the scapulae). Each 

participant completed the circuit 6 times, with only 
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data collected from each the third trial used in this 

study 

 

iii. Simulated Team Sport Circuit 

 

The simulated team sport circuit involved a modified 

version of the circuit developed by Singh et al. 

(2010). Each circuit included three counter-

movement jumps, an eight meter jog, an eight meter 

agility section, two jumps for distance, a 10 m 

sprint, seven meters of walking, and a tackle bag to 

be taken to ground with maximum force. After each 

movement finished with the participant standing 

stationary for one second before commencing the 

next (i.e., three counter-movement jumps were 

performed in a row then a one second pause 

occurred). All movements were restricted within an 

optimal 8 × 8 m capture volume. Each individual 

circuit took approximately 45 seconds to complete, 

allowing 15 seconds to rest before the next circuit 

(on 1 minute) with six circuits completed in total (n 

= 456). All participants performed an active warm-

up prior to commencing the full protocol, which 

involved five minutes of jogging followed by six 

laps of the circuit, during which time the 

experimenter explained all requirements of the 

circuit. 

 

iv. Data Processing 

 

The data gathered comprised of the accelerometer (3 

axes and the resultant vector) and gyroscope (3 axes) 

readings for the duration of the circuit. For each of 

the eight movements of interest (counter movement 

jump (CMJ), change of direction (COD), jog, run 

and jump, sprint, stationary, tackle, and walk), the 

corresponding data was extracted and processed to 

generate features of interest. Figure 1 below gives an 

overview of both the feature extraction and 

classification process. 

Features were extracted from the data using three 

different window lengths of 0.5, 1, and 1.5 seconds 

respectively, each with a 50% overlap. The window 

lengths were chosen in such a way as to capture the 

peak force of most activities whilst also being long 

enough to accurately capture a descriptive segment 

of each activity. Further, the use of a 50% overlap 

has been proven successful in previous movement 

classification studies (Bao and Intille, 2004).  
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Figure 1: Overview of the feature extraction and 

classification process. 

 
Features were extracted from the data using three 

different window lengths of 0.5, 1, and 1.5 seconds 

respectively, each with a 50% overlap. The window 

lengths were chosen in such a way as to capture the 

peak force of most activities whilst also being long 

enough to accurately capture a descriptive segment 

of each activity. Further, the use of a 50% overlap 

has been proven successful in previous movement 

classification studies (Bao and Intille, 2004).  

For each variable associated with the accelerometer 

(3 axes and the resultant vector) and gyroscope (3 

axes), a total of 59 features were calculated (7 total 

inputs). Those features being: 

 Minimum amplitude. 

 Maximum amplitude. 

 Mean amplitude. 

 Variance of amplitude. 

 Spectral centroid. 

 Bandwidth. 

 Energy for each sensor (accelerometer and 

gyroscope). 

 Percentiles (.25, 0.75, interquartile range 

[IQR] ) 

The minimum, maximum, mean, and variance of the 

amplitude provide important descriptors of the input 

variables time domain and thus there were obtained 

for each input (Leutheuser et al., 2013). The spectral 

density and bandwidth provided via the use of the 

FFT represent important descriptors relating to the 

central mass and frequency domain of the input 

variables (Leutheuser et al., 2013). Additionally an 

energy feature was calculated for both the 

accelerometer and gyroscope (Leutheuser et al., 

2013), as well as percentiles and IQR for each input 

variable (Liu et al., 2012). The energy feature is 

defined as 
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Where    are the axes corresponding to either the 

accelerometer or gyroscope and   is the number of 

observations per axis. 

 

 iv. Analysis 

The three classification algorithms (LMT, RF and 

SVM) were employed to classify the seven 

movements of interest. However as both 

computational and data collection burdens have been 

considered, analysis was conducted in two phases. 

In phase one, a data collection burden was assessed. 

This was achieved by, for each of the three window 

lengths extracting the features as follows 

 In case one all variables were considered 

(59 features). 

 In case two only the accelerometer and 

resultant vector variables were considered 

(33 features). 

 In case three only the accelerometer 

variables were considered (26 features). 

In phase two a data processing burden was assessed. 

This was achieved by, for each of the three window 

lengths, extracting features as follows 

 In case one, all 59 features were 

considered. 

 In case two, features were reduced to 42 by 

using ANOVA. 

 In case three, features were reduced to 37 

(0.5 second window) and 38 (1 second and 

1.5 second windows) using a combination 

of ANOVA and lasso regression. 

  

Under phase 2, features with significant results for 

ANOVA at 5% level of significance across 

classification groups were retained for classification 

purpose. Next under case three, all features which 

that were accepted through the case two  were 

passed  for screening under lasso regression. Under 

this screening a feature was selected based on the 

combinations of (Mallow’s Cp (Cp), residual sum of 

squares (RSS), and coefficient of determination 

(R
2
))   

For each subject group (n=76) from the computed 

set of feature data a single activity was randomly 

chosen (with equivalent probability) and assigned to 

the classification training set. A random sample 

(with equivalent probability) of 32 activities was 

then taken from the remaining set of feature data and 

assigned to the classification testing set.  The above 

process was repeated 10 times.  Each model was 

then validated with classification accuracy defined 

as percent of correctly classified cases. 

 

 

 

3. RESULTS 

Results were obtained using an analysis routine 

written in the statistical package R (R Core Team, 

2013) which makes use of the following packages; 

e1071 (Meyer et al., 2014), lars (Hastie and Efron, 

2013), randomForest (Liaw and Wiener, 2002), and 

RWeka (Hornik et al., 2009; Witten and Frank, 

2005). 

i. Data Collection Burden 

 

Table 1 presents the classification accuracies and 

standard deviations for all three variable and 

window combinations. Throughout all classification 

iterations LMT greatly outperforms both RF and 

SVM classifiers, obtaining classification accuracies 

over 85%. 

ii. Processing Burden 

Table 2 presents the processing times for all three 

variable and window combinations for a given 

subject. The computational times are for an Intel® 

Core™ i7-2670QM CPU with 8 GB RAM. From 

this it can be seen that the processing  time 

(extraction and classification) for a feature reduced 

model reduced using ANOVA is approximately 15% 

faster than classification of the full model, while the  

Table 1: Mean (SD) accuracy of classifiers for each 

of the input variable variations and window lengths 

after 10-fold cross-validation. 

 
Window 

0.5 1 1.5 
Input  

Accelerometer, 
Gyroscope, and 

Resultant 

Vector 

RF 
0.28 

(0.14) 
0.47 

(0.12) 
0.28 

(0.13) 

LMT 
0.90 

(0.12) 
0.90 

(0.05) 
0.88 

(0.14) 

SVM 
0.39 

(0.18) 
0.55 

(0.12) 
0.41 

(0.12) 

Accelerometer 

and Resultant 

Vector 

RF 
0.22 

(0.11) 
0.26 

(0.14) 
0.25 

(0.16) 

LMT 
0.87 

(0.13) 
0.88 

(0.13) 
0.88 

(0.12) 

SVM 
0.41  

(0.13) 

0.46 

(0.13) 

0.46 

(0.10) 

Accelerometer 

Only 

RF 
0.26 

(0.15) 

0.25 

(0.13) 

0.29 

(0.17) 

LMT 
0.85 

(0.16) 
0.88 

(0.13) 
0.85 

(0.13) 

SVM 
0.33 

(0.09) 
0.38 

(0.13) 
0.31 

(0.11) 

Highest mean accuracy per variable variation and window length in bold 
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combined ANOVA and lasso  based feature 

reduction model is between 1% and 3% slower than 

the pure ANOVA model. Table 2 presents the 

classification accuracies and standard deviations for 

all three model selection methods and window 

combinations. Once again throughout all 

classification iterations LMT greatly outperforms 

both RF and SVM classifiers, obtaining 

classification accuracies over 85%. 

Table 2: Mean (SD) accuracy and [Processing Time 

(in seconds)] of classifiers for each of the model 

selection variations and window lengths after 10-

fold cross-validation. 

 
Window 0.5 1 1.5 

Input Extraction [236.25] [230.98] [228.87] 

Accelerometer, 

Gyroscope, 
and Resultant 

Vector 

RF 
0.28 

(0.14) 

[7.54] 

0.47 
(0.12) 

[7.58] 

0.28 
(0.13) 

[7.72] 

LMT 
0.90 

(0.12) 

[53.47] 

0.90 
(0.05) 

[53.66] 

0.88 
(0.14) 

[56.66] 

SVM 

0.39 

(0.18) 
[104.55] 

0.55 

(0.12) 
[102.84] 

0.41 

(0.12) 
[105.98] 

Accelerometer 

and Resultant 

Vector 

RF 
0.28 

(0.12) 

[6.6] 

0.28 
(0.14) 

[7.47] 

0.29 
(0.14) 

[6.92] 

LMT 
0.86 

(0.13) 

[42.51] 

0.85 
(0.13) 

[44.94] 

0.85 

(0.14) 

[44.38] 

SVM 

0.48 

(0.13) 
[77.14] 

0.43 

(0.13) 
[80.55] 

0.46 

(0.12) 
[81.46] 

Accelerometer 
Only 

RF 
0.26 

(0.11) 

[6.95] 

0.28 
(0.15) 

[6.83] 

0.22 
(0.10) 

[7.08] 

LMT 
0.86 

(0.15) 

[44.16] 

0.86   
(0.12) 

[45.21] 

0.85 
(0.14) 

[46.71] 

SVM 

0.46 

(0.16) 
[77.57] 

0.42 

(0.15) 
[76.71] 

0.42 

(0.14) 
[83.15] 

 
Highest mean accuracy per variable variation and window length in bold

 

4. DISCUSSION 

The aim of this study was to determine whether data 

obtained from a commercially available 

accelerometer and gyroscope could be used to 

identify team sport related movements. Optimal 

results were obtained using LMT method and 

window length of 0.5 and 1 sec, with an overall 

accuracy of 90%.   Largely  the classification 

inaccuracy resulted from cases where Jog was being 

classified as Run&Jump or Sprint and Tackle being 

classified as COD or Sprint. 

For reduced burden of data collection, using only 

accelerometer and resultant or accelerometer alone, 

the accuracy rate drops down to 87 and 85 % 

respectively.  Such a model would require 

approximately 230 sec of time for feature extractions 

and further 54 seconds for classification of 

movements using LMT model. 

Comparable results are obtained in literature with 

much larger volumes of data accumulation and 

smaller number of classification groups. Nathan et 

al. (2012) using accelerometer and GPS data 

gathering over 750000 measurements and achieved 

accuracy of over 84% for RF and SVM classifiers. 

Leutheuser et al. (2013) also using the subsequently 

large dataset and pre-clustering the activities, 

achieved an accuracy of 87% for SMV method. 

Mitchell et al. (2013) reported a similar trend in 

classification with LMT method, on much smaller 

frequency of data accumulation, being the 

best performing classifications.                  

The window lengths selected for feature extraction 

influence classification accuracy, and processing 

time.  The classification accuracy across the 

explored window lengths and processing time are 

not hugely different.  Nevertheless the shorter 

window lengths would be preferred with ability to 

capture all movement types. For example the 

average length of time taken to complete a tackle is 

3.5 seconds with a peak force being experienced 

over 0.5 seconds and 40% of the tackle being 

captured over 1.5 seconds. To this end, our similar 

classification rates to previous studies using a lesser 

number of measurements is encouraging. 

It can be seen through this research that LMT is 

highly effective at classifying sporting activity using 

a single accelerometer and gyroscope with only 

minimal data gathered.  

5. CONCLUSION 

In any sporting scenarios sports it is practical to 

obtain the accelerometer and gyroscope data using a 

single sensor worn between the shoulder blades. Our 

results indicate that LMT is highly effective at 

classifying sporting activities with approximate 

accuracy of 90% and classification time of 230 

seconds. 
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Abstract 
 

The duration over which teams in sporting leagues have an enhanced likelihood of winning a premiership is 

called the premiership, championship or title window. Defining when a team enters their premiership window 

is subjective and often based upon current or projected team strength, the recent trajectory of the team (i.e. 

whether the team is moving up the ladder), and perhaps the coaching staff and club culture. Winning a 

premiership is a clear indicator of success, but for a team to have entered their premiership window, the 

definition is much broader and can include years of making finals or playoffs. Periods of success can be 

fleeting, with a single outstanding year surrounded by years of mediocrity, or can be enduring. Likewise, a 

lack of achievement can be brief or persist for decades, much to the frustration of clubs and supporters alike. A 

critical component of success is the ability of a club to acquire a rare grouping of players that, in combination, 

improve team strength to the point that success can be achieved. Trading aside, clubs obtain new players 

through an annual draft. One of the more common draft systems is the reverse-order draft, whereby clubs 

select players in reverse-order to their finishing position. This system can enable chronically poor-performing 

teams the ability to ‘stock-pile’ high draft pick players that have the potential to become a future collective of 

champion players; and open the team’s premiership window.     

 

In this paper we use a simulation model, Sports Synthesis, to explore how characteristics of the draft can 

influence team success and failure. We find that some teams consistently cycle between success and failure, 

while others can become stuck in mid-ranks, with minimal success over extended periods of time. A critical 

determinant of the duration of the premiership window is the degree to which clubs are able to resolve the 

ability of players in the draft, namely the draft choice error.    

 

 
 

 

Keywords: Amateur draft, sporting success, player productivity, simulation model 
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Abstract 
 

Golf is widely regarded as a difficult sport to model.The focus of this paper is to build on previous research in 

modelling PGA golf tournaments through simulation. The aim is to identify whether there is a use for hole 

based modelling in tournament simulation. Tournaments have previously been simulated round by round, with 

player scores sampled from one of multiple round score distributions.Distributions were chosen by chance 

based on the likelihood a player would have a certain rank following each round dependent on their current 

tournament score. In this research, we introduce a simple player ratings system, and a means of characterising 

each hole on any given tournament course.These hole characteristics were used to create a score distribution 

for each hole. Player ratings were used to create hole score distributions for each player for holes of the same 

par. Bayesian Inference was employed to combine both these distributions, creating player dependent hole 

score distributions. Such distributions facilitate hole by hole tournament simulation. The 2014 US Masters 

tournament was used as a case study to compare the previous round based simulation model with the new 

holebased simulation model. Analysis of results for predicted final rankings indicated the hole based model 

was better than the round based model when simulation included the first three tournament rounds. This result 

was reversed when only the last round was simulated.  Findings suggest the benefits of the more 

computationally complex method of holebased simulation are reduced as the tournament progresses.However, 

a comparison of simulation outputs across multiple tournaments would be required for this to be concluded. 

 
 

Keywords: Golf, Bayesian, Simulation, Hole by Hole, PGA 

 
1. INTRODUCTION 

 

1.1 Simulation in Professional Golf 

 

The majority of modelling in professional golf is 

not simulation based. Most modelling of score and 

rankings take the form of correlational analysis of 

longitudinal performance statistics with scoring 

average (O’Bree& Bedford, 2012). The benefit 

simulation provides is a method of dynamically 

modelling what it known to be a difficult and 

highly complex sport to model. Tournament 

playing fields typically number 150, and with 18 

holes per round and four rounds per tournament, 

performance modelling needs to account for the 

ample time available for variations in player 

performance. Tournament simulation provides a 

means of measuring the potential for variations in 

performance and scores, not just in the tournament 

as a whole, but by round scores and rankings, and 

potentially hole scores and rankings. 

 

1.1.1 Round based Modelling 

 

Round based models allow player performance to 

be assessed at the break points in the tournament. It 

is not unreasonable to think player performance 

will vary day by day. An issue however in round 

based modelling is that the current form of the 

player can only be evaluated three times throughout 

the tournament. Given the natural difficulty in 

modelling scores, this is not ideal. 

 

It has been shown that tournament outcome 

predictions through round based simulation can be 

completed reasonably well using onlyhistoric round 

scores and their corresponding rankings (O’Bree& 

Bedford, 2012). In this research, tournaments were 

simulated by generating round scores for each 

player prior to each round. Historic round scores 

were standardised by the corresponding course par 

so round scores from courses with different course 

par scores could be combined, creating the new 

score variable Par Percentage. To account for a 

round effect, so as to say control for differences in 

player performance between say round one and 
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three for example, round score distributions were 

generated for each using only scores from the 

corresponding round in previous tournaments. This 

result was a different score distribution for each 

round of the tournament. These score distributions 

were seen to be normally distributed, and due to the 

independent variable Par Percentage being 

continuous, were approximated using binomial 

distributions. This not only simplified computation 

but made the score distributions discrete. 

 

Each round score distribution was split by some 

result outcome for the player who achieved the 

score. For rounds one and two, the score 

distributions were split by whether or not the player 

made the cut. For rounds three and four, the split 

was by whether or not the player was ranked in the 

final top 10. Multiple distributions for each round 

were introduced to account for differences in player 

ability. 

 
Figure 1.Example of a split round score distribution 

by making the cut. 

 

Scores were randomly sampled from a round score 

distribution based on each player’s likelihood of 

either making the cut or finishing in the top 10 

from their current tournament score. The 

probability of each outcome based on current score 

was calculated from the distribution of historic 

round scores, and served as the prior distribution 

throughout simulation. The prior distribution itself 

was combinedwith individual player outcome 

likelihoods, taken as the ratio of tournaments where 

the player made the cut or finished top 10 to the 

number of tournaments played. The posterior 

distribution of the likelihood of sampling from 

either round score distribution was found using 

Bayes’ Rule. 

 

        
            

                   
      

  
 

 

Where round score distribution θ is sampled 

dependent on current score x with probability 

      conditional on player outcome likelihood  . 
 

1.1.2 Hole based Modelling 

 

Hole based modelling has the potential to improve 

a simulation model’s prediction performance 

because it can measure player performance at a 

more detailed level. Characteristics of holes can be 

included in calculations, and depending on detail of 

inputs, score prediction can be made specific to 

both the hole and the player. An accurate measure 

of a player’s ability based on hole characteristics 

has the potential to capture variations in 

performance better than a round based model 

because multiple scores are modelled instead of 

just one. 

 

A method for evaluating player performance 

(Stern, 2012) at the hole level used a semi-

parametric Bradley-Terry type strength estimation 

model. This research provides a comparison 

between observed rankings and a measure of 

underlying player strength. Further, factors that 

affect performance such as tee times and hole 

difficulty can be quantified. 

 

1.2 Aims 

 

The aim of this research is to extend the round 

based model (O’Bree& Bedford, 2012) from 

previous research into a hole based model. Using 

the 2014 Masters as a case study, the two models 

will be used to simulate the tournament with 

prediction accuracies compared following each 

round. Analysis of results will indicate whether 

simulation at the hole level provides benefit in 

terms of prediction over the round based model. 

Should the hole based model prove to be of benefit, 

or at least practical in its current form, model inputs 

could be expanded to include results from research 

into factors not yet considered. The inclusion of a 

better measure of hole difficulty, for example, 

would like improve the accuracy of prediction by 

the hole based model. 

 

2. METHODS 

 

2.1 Data and Software 

 

A database of hole by hole round scorecards was 

utilised to build score distributions and facilitate 

tournament simulation. A player’s scorecard 

contains the hole and par score for each hole, as 

well as tournament characteristics such as date, 

location and year.These scorecards were sourced 

primarily from sports.yahoo.com/golf, using Visual 

Basic for Applications (VBA) macro procedures in 

Microsoft Excel.Player ratings and hole score 

distributions were generated using data from every 

official PGA tour event spanning the first 

tournament of the 2007 tour til the last tournament 

played before the 2014 Masters.All simulations 

were carried out using Microsoft Excel 2010. A 

more comprehensive description of software 
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mechanisms is available in the proceedings of the 

International Association of Computer Science in 

Sport (IACSS) 2014 Conference (O’Bree& 

Bedford, 2014). 

 

2.2Player Ratings 

 

Player ratings were created dependent on hole 

scores from recently completed rounds. As such, 

these ratings are seen as a measure of the current 

form of a player. 

 

For any given complete round, we can determine a 

ratio score for each player based on hole par. This 

ratio is taken as the sum of the hole scores divided 

by the average total across the playing field. The 

ratio score is calculated for each of par 3, 4 and 5 

holes, giving three ratio scores for each player of 

each completed round. The rating itself is taken as 

the average of the eight most previously completed 

rounds. In the event less than eight rounds of data 

are available for a player, the average of any 

available ratios are used. It should be noted that this 

parameter has not been optimised. This was an 

arbitrary value chosen because it ensured that for 

any given player at least two recently played 

tournaments are included in calculation, given most 

tournaments consist of four rounds. 

 

     
 

 
         

   

     

 

 

Where      is the rating prior to round t for holes of 

par i. 

 

2.3 Hole Score Distributions 

 

Conditional score distributions incorporating player 

ratings and hole characteristics are used to simulate 

hole scores, and as a result entire tournaments. 

Bayesian Inference is used to update probability 

distributions through the introduction of additional 

information using Bayes’ Rule. In this case, we 

want to update hole score probability distributions 

based on the ability of a player. 

 

2.3.1 The Prior Distribution 

 

A prior score distribution for each hole was 

determined by considering two simple 

characteristics, the hole par and a measure of the 

hole’s difficulty, average score. The hole par is 

defined as the expected number of shots a 

professional player should take to reach the green 

plus two putts. Typically, this makes the hole par 

dependent on its distance from tee to green. The 

difficulty of a hole can be gauged by comparing the 

average score for the hole with its corresponding 

par. This is of course neglecting any impact from 

intermittent, dynamic factors during a round such 

as wind, and assuming the quality of a tournament 

playing fields are equal across tournaments. Using 

these characteristics, we can create a probability 

distribution of observed hole scores based on the 

hole par and the inferred difficulty of the hole. 

 

                                          
 

For the purposes of this research, the average score 

of a hole from the most recently completed 

tournament round is used. The average score is 

rounded to one significant decimal place. 

 

2.3.2 The Posterior Distribution 

 

The posterior hole score distribution is an updated 

version of the prior distribution using what is 

referred to as the likelihood function. The 

likelihood function simply contains additional 

information. The aim is to tailor the score 

distribution to individual players. In the same way 

a prior score distribution was determined, we can 

generate score distributions based on the hole par 

and observed scores from players with equal player 

ratings. 

 

                                             
 

For the purposes of this research, player ratings are 

rounded to one significant decimal place.Bayes’ 

Rule is used to combine the two hole score 

distributions, creating the posterior distribution. 

 

In the event no scorecard data was available for a 

player, a uniform likelihood distribution was 

assumed, meaning the posterior distribution is the 

same as the prior distribution, and the hole score 

distribution reflects the historic distributions of 

scores for that hole. Such a scenario is not unusual 

given the playing list for The Masters is created on 

an invite basis and tournament winners from non-

PGA tours are invited to compete. There were four 

such instances in the 2014 Masters tournament. 

 

Note that no data smoothing has been used when 

generating any of the hole score distributions. 

 

3. RESULTS 

 

Both the round and hole based models were be 

used to simulate the 2014 Masters tournament. A 

total of four simulations were completed for each 

model, where simulation took place prior to the 

start of each day’s play. Each simulation comprised 

of 30,000 iterations. 

 

Simulation results focussed on the accuracy of 

predicted rankings for each player, primarily the 

final rankings. Due to the cut taking place after 
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round two, simulations of rounds prior to round 

three also looked at predicting players who will 

make the cut. Analysis of predictions was in the 

form of measures of classification, specificity, 

sensitivity and accuracy, and correlation 

coefficients. Specificity is a measure of a model’s 

ability to correctly exclude cases, meaning to 

correctly classifying a player as missing the cut 

given they do in fact miss the cut. Sensitivity is a 

measure of a model’s ability to correctly include 

cases, meaning to correctly classifying a player as 

making the cut when in fact they do. 

 

A total of four models were analysed. The round 

based and hole based simulation models are 

labelled as RMITa and RMITb respectively. Also 

included is a naïve model, which essentially 

projects current rankings at any point as final 

rankings, labelled Naïve. The Naïve model 

provides reference for what can be seen as a 

measure of volatility in rankings. The final model 

comes in the form of ranking publicly released 

outright tournament win market prices from 

bet365.com, labelled Bet365.Predictions from this 

model assumed players who have been judged 

more likely to win the tournament, by having a 

lower market price, are more likely to have a better 

final ranking in general. As such, market prices are 

ranked to infer final rankings. The inclusion of the 

additional two models is to provide a point of 

reference with regards to prediction accuracy; 

particularly, the Naïve model which indicates if any 

modelling benefit exists from simulation. 

 

3.1 Predicting the Players Making the Cut 

 

Model 
Players Correctly Predicted to Make the Cut# 

Pre Round One  Pre Round Two 

Naive NA  39 

Bet365* 31  35 

RMITa 20  38 

RMITb 30  38 

 

# Total of 51 players made the cut 

Table 1: Number of Players Correctly Predicted to Make 

the Cut 

 
 

Measures of Classification for Players Predicted to Make the Cut 

Measure 

Pre Round One Pre Round Two 

Naive Bet365# RMITa RMIT2b Naive Bet365# RMITa RMIT2b 

Specificity NA 0.489 0.326 0.500 0.717 0.320 0.717 0.717 

Sensitivity NA 0.620 0.392 0.588 0.765 0.745 0.745 0.745 

Accuracy NA 0.558 0.361 0.546 0.742 0.597 0.732 0.732 

Samples  95 97 97 97 72 97 97 

 
# Bet365 Top 51converted from outright win market lines 

Table 2: Measures of Players Correctly Predicted to Make the Cut following Round Two 

 

 

Table 1 displays the number of players correctly 

predicted to make the cut. Prior to the tournament 

commencement the Bet365 and RMITb models 

correctly assigned 31 and 30 players respectively, 

while RMITa correctly assigned 20 players. As 

would be expected, all models improved following 

round one. The Naïve model outperformed the 

others, however only slightly in the case of both 

RMIT models. Table 2 displays similar trends in 

predictive success with classification measures, 

with both RMIT models outperforming the Bet365 

model, and only slightly less successful than the 

Naïve model. These results indicate it is easier to 

correctly classify a player as missing the cut than to 

classify a player as making the cut. 

 

 

 

 

3.2 Predicting the Top 10 

 

In total, 13 players ranked in the final top 10. This 

is due to six players being tied ranking eighth. 

 

Model 
Players Correctly Placed in the final Top 10# 

Pre Round Three  Pre Round Four 

Naive 7  10 

Bet365* 8  8 

RMITa 6  9 

RMITb 6  9 

# Total of 13 players placed in the final Top 10 

* Bet365 Top 10 converted from outright win market lines 
 

Table 3: Number of Players Correctly Predicted to Finish 

Top 10 
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Measures of Classification for Top 10 Placed Players 

Measure 

Pre Round Three Pre Round Four 

Naive Bet365# RMITa RMITb Naive Bet365# RMITa RMITb 

Specificity 0.816 0.939 0.895 0.895 0.921 0.857 0.974 0.974 

Sensitivity 0.538 0.615 0.462 0.462 0.769 0.667 0.692 0.692 

Accuracy 0.745 0.848 0.784 0.784 0.882 0.769 0.902 0.902 

Samples 51 45 51 51 51 26 51 51 
# Bet365 Top 10 converted from outright win market lines 

Table 4: Number of players correctly predicted to Place in the Top 10 

 

 

Table 3 displays the number of players correctly 

predicted to finish in the top 10. The Bet365 model 

was the only model not to improve between rounds, 

with the other models all improving by 3 correct 

classifications. Note though the smaller sample size 

in market prices. As was the case when predicting 

the players who would make the cut, it appears it is 

easier to identify players who won’t finish top 10 

than to identify those that will. In this case, 

measures of classification were the same between 

RMIT models, despite differences in predicted 

rankings between the models for the same players. 

 

3.3 Predicting the Final Rankings 

 

Model 

Final Rankings Correlation Coefficient 

Pre Round 

Two 

Pre Round 

Three 

Pre Round 

Four 

Naive .389* .454* .825* 

RMITa .194 .436* .828* 

RMITb .357* .496* .796* 

* Correlation is significant at the 0.01 level 

Table 5: Spearman Correlation Coefficient for Predicted 

and Observed Final Rankings

 

  
Cumulative Proportion of Absolute Errors in Predicted Final Ranking 

Absolute Error (<=) 0 1 2 3 4 5 6 7 8 9 10 

Pre Round Three 

Naïve 0.04 0.17 0.21 0.21 0.25 0.29 0.42 0.54 0.58 0.58 0.63 

RMITa 0.08 0.08 0.13 0.13 0.21 0.33 0.38 0.42 0.42 0.46 0.54 

RMITb 0.04 0.13 0.17 0.21 0.25 0.33 0.38 0.46 0.54 0.54 0.58 

Pre Round Four 

Naïve 0.13 0.29 0.54 0.54 0.58 0.58 0.63 0.67 0.67 0.71 0.88 

RMITa 0.13 0.33 0.50 0.54 0.58 0.67 0.67 0.67 0.67 0.71 0.75 

RMITb 0.13 0.29 0.46 0.50 0.63 0.63 0.63 0.63 0.67 0.71 0.71 

Table 6: Cumulative proportion of absolute errors in predicted final rankings 

 

Table 5 displays correlation coefficients for 

observed and predicted final rankings. Correlations 

between the Naïve and RMITb models are 

essentially the same throughout simulations. 

 

Table 6 displays absolute errors in predicted final 

rankings as a proportion of all predictions. The 

better the predicted rankings across the spectrum of 

the player list the greater the proportion with 

smaller absolute errors. Predictions prior to round 

three saw the Naïve model have the greatest 

proportion as error increased. Predictions prior to 

round four saw similar measurements between the 

three models until the absolute errors reached a 

value of 10, at which point error are quite large. 

 

4. DISCUSSION 

 

When models were used to determine the players 

who would make the cut following round two, 

there were varying results between models when 

predictions were made at different times. 

 

Prior to round one, no observed scores or ranks can 

be used, so predicted ranks rely only on measures 

of form for each player that each model uses. It is 

no surprise the round model RMITa, which does 

not include such measures, is much less effective in 

classifying players. The Bet365 and RMITb models 

were essentially equal in success. While the Bet365 

model uses publicly released market prices which 

are subject to influence from the public opinion, the 

similarity in success suggests the player ratings 
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measure utilised by RMITb is a suitable model 

input. 

 

Predictions in the players who would make the cut 

following round one have observed scores and 

rankings available. The Naïve model was most 

effective in inferring the players who would make 

the cut, which tends to suggest that a player’s 

current position is a more important factor in 

determining final result than the player’s form. This 

is further evidenced by the substantial improvement 

in the round based RMITa model, putting it on 

level pegging with the hole based RMITb model. 

Note these results relate to one tournament only, 

and such a finding needs to be measured in more 

tournaments to be concluded. The Bet365 model 

showed improvement but to a lesser degree. One 

would expect wagering patterns would somewhat 

reflect the presence of well-placed champion 

players and past winners over current scores, 

particularly in the early rounds of a tournament. 

Again, this may be explained by a tendency to 

favour some aspect of a player’s history or current 

form over their current tournament position. 

 

When predicting players who would finish with a 

final rank in the top 10, we saw a drop in 

classification accuracy for the Bet365 model 

between pre and post round three calculations. This 

tends to suggest that a decline in the quality of 

performance by bigger name players was 

influential in this tournament. Take for example 

Adam Scott, the pre-tournament favourite. His final 

ranking was tied 14
th

 scoring 289 for the 

tournament. He scored 76 in the third round, four 

shots more than his next highest round score at 72. 

A third round score of 72 would have seen his final 

score be 286 and tied for fifth. A third round score 

of 75 would have seen him tied eighth. The 

difference between making and missing the top 

10for Scott was one shot, and given his worst score 

was in the third round, it is reasonable to attribute 

the drop in classification accuracy to these 

differences in performances like these. 

 

It is interesting to see the classification measures 

were the same between the RMITmodels when 

predicting the final top 10. The similarity suggests 

the worth of the features of the models are the same 

– at least following the end of round two. The 

RMITa model uses the likelihood a player will 

finish in the top 10 given they made the cut 

throughout the seven seasons of data used and their 

current score for simulation inputs. The RMITb 

model uses a measure of hole difficulty in the most 

previous average score and a player rating for 

current form to generate score distributions. Given 

results were the same, it may be the case that using 

this particular measure for player ratings does not 

provide better round score accuracy when holes are 

evaluated individually. Should this be the case, a 

measure of current form is no better than an 

historic measure at providing insight into 

performance in the last two rounds of the 

tournament, given inferences from sampling round 

scores were the same as from sampling hole scores 

and totalling round scores. 

 

Analysing the absolute errors in predicted final 

rankings and correlation coefficients with observed 

final rankings indicated that prior to round three the 

RMITb model had slightly better predicted 

rankings, while post round three the RMITa model 

had better predicted rankings. In each instance, the 

better of the RMIT models had a better correlation 

coefficient than the Naïve model for the 

corresponding round. As absolute error in predicted 

ranking increased, the model with the greatest 

proportion of predictions varied. Such findings 

indicate the while variations in the distribution of 

absolute errors were present for each model, the 

difference in the RMIT models was able to tease 

out an improvement over the Naïve model 

following round two. 

 

6. FUTURE RESEARCH 

 

Future work will look to confirm findings in this 

research. Mainly, that current position is a more 

important factor to consider when simulating 

tournaments than current player form as the 

tournament progresses. 

 

6. CONCLUSIONS 

 

The aim of this research was to find out if there 

was benefit to simulating golf tournaments at the 

hole level when compared to the round level. The 

two models analysed performed well overall when 

compared with two other predictive models. Both 

models were seen to perform the best at certain 

times during the tournament, such that there would 

be value in including both round based and hole 

based simulation models for tournament simulation 

weighting results accordingly. 
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Aim of the study 

The advent of 3D ball trajectory data in tennis has brought into reach new options of modeling 

relevant behavior in tennis by mathematical processing of these data. In previous work, placement of 

services was characterized by their bouncing points in the service box (Loffing et al., 2009). Much 

more relevant in terms of tennis tactics is the penetration point of the ball trajectory of the service 

through the action plane of the return player. The location of this point in vertical and lateral direction 

imposes problems for a return. With 3D ball trajectory data available mathematics for calculating 

penetration points becomes quite easy. 

 

Methods 

A vertical plane three feet in front of the receiver’s baseline is assumed to be the action plane of the 

return. Ball trajectories are obtained by image detection methods. The part of the trajectory after the 

bounce of the service is given by a three-dimensional cubic polynomial. A MATLAB (The 

Mathworks, Inc.) procedure was programmed for extracting the y-z-coordinates of the ball’s 

penetration point. 

In order to investigate the distribution of tennis serves, a virtual plane with 24 slots (5 in z-direction, 8 

in y-direction) was built for each of the four serve categories: deuce court – first serve, ad court – first 

serve, deuce court – second serve and ad court – second serve. 

Data were obtained from 10418 serves of 53 right-handed male players during international 

tournaments on hard court. 

 

Results 

Due to different spin and speed, service bounces in the service box are quite dissimilar to penetration 

points in return action plane. 

The main tactical plans associated with first and second services from deuce and advantage side could 

be found in hitting vertical and lateral slots in return action plane. Statistically significant differences 

proved different tactical behaviors in the respective situations. 

 

Conclusions and outlook 

This study demonstrates that data provided by new technologies allow for mathematical models 

more adequately describing behaviors in sport. (Simple) Mathematics allows revealing structures 

of performance that were formerly not accessible to performance analysis. 

There may be still more adequate ways to model the return player’s action plane, e.g. in a curve-

shaped way. Also, the development of mathematical models for new performance indicators for 

the placement of services can now be addressed at a new level of evidence. 
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Abstract 
 

This paper focuses on the surface effect in men’s tennis from both a performance perspective and a wagering 

angle. Through analysis of data from 2002-2013, we investigate a number of effects distilled by surface. We 

find that significant variation in both the predictability of outcomes exists across surfaces. We also look at the 

efficiency of the markets by surface, and how, in light of diminishing over-round, how surface plays a part. 

We also investigate the volatility of results by surface, controlling for the level of the tournament (grand slam 

down to ATP250), and the number of times there are in-game shifts in lead, for example, changes in lead (ie. 

6-3 to 3-6, and by underdog against favourite). 

We also consider the length of matches via games played as a function of potential matches possible (ie in 3 or 

5 set tiebreak/non tiebreak). Whilst not necessarily a precise measure of length, we consider this as a 

reasonable pseudo measure. 

 
 

Keywords: tennis, surface, ATP. 
 

 

 

 

 

1. INTRODUCTION 

 

Tennis is one of the few sports where the game 

can be played on different court surfaces. On the 

professional circuit players compete on grass, clay, 

carpet, indoor, acrylic and synthetic hard court. 

Each court surface has its own characteristics 

which can have a positive or negative effect on a 

player's style of play and consequently 

performance (Clarke and Dyte, 2000). For 

example, Pete Sampras won fourteen grand slams 

yet failed to win the French Open.  

The most common court surface is hard 

court. Hard court is known to produce medium to 

fast courts which the ball tends to bounce more at 

contact. Players with big serves and forehands 

tend to perform better on hard court. Clay courts 

are considered to be slower courts where at contact 

with the surface the ball tends to bounce up or sit 

rather than skidding, where a greater number of 

bad bounces occur. Grass courts suits a serve-and-

volley style of play as they are the fastest court to 

play on. When the ball contacts the grass surface 

the ball tends to stay low and skid. 

Various research has been performed in 

analysing the effect of court surface as there is an 

expectation that all players win a higher 

percentage of serves on grass than other surface 

(Barnett and Clarke, 2005).  

 Barnett and Clarke (2005) and Barnett,  

O’Shaughnessy and Bedford (2011)applied the 

effects of court surface to calculate the probability 

of winning a point on serve using overall 

percentage of points won on serve for that 

tournament and player’s returning and serving 

statistics for each surface.Del Corral and Prieto-

Rodriguez (2010) found that a significant court 

effect regarding higher-ranked player victories in 

Wimbledon and Australian women’s tournament. 

Koning (2011) found that performance advantage 

can be partially attributed to the familiarity with 

the court surface. McHale and Morton (2011) 

found that surface, time and ease of win is an 

important measure to assess player’s quality and 

produce more accurate forecasts. They concluded 
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that clay should be regarded as a separate entity in 

a forecasting model. 

Thus the aim of this research is to 

investigate the surface effect in men’s tennis from 

both a performance perspective and a wagering 

angle. Analysing eleven years of data we 

determine whether an effect of court surface was 

present, and how it can be considered when 

modelling ATP tennis. 

 

2 METHODOLOGY 

 

To examine our data, we utilised a number of 

sources. To assist we utilised both individual 

player’s in-game data and post match results. We 

also required knowledge of the ATP tournaments, 

including the surface and points. In this way were 

able to isolate various facets of the effect. Tennis 

Insight (tennisinsight.com) was most useful in 

utilising player based data. Stevegtennis was also 

used – and has been around since the dawn of the 

internet. Our analysis methods were simple data 

extraction methods and cross tabulation. We also 

utilised two sample z-test of proportions and 

standard confidence intervals where needed. 

 

A number of terms are used that the reader may 

not be familiar with, so we define these as follows: 

Efficiency – this term is used in terms of a market 

being efficient, that is, that it predicts to 

expectation. This is a common term used to 

evaluate systems. A model’s efficiency is used in 

that way. 

Over-round is the amount of additional probability 

attributed to a market by a bookmaker. For 

example, if a market is framed as follows: 

 

Roger Federer $1.73 

Rafael Nadal $2.00 

 

Then we Over-round                    
               or     
 

Chi-square goodness of fit tests were also used to 

evaluate outcomes of results against expectation. 

Lower chi-square values indicate markets or 

models that are efficient. 

 

We shall provide you with a variety of tables and 

figures that tear apart surface against a variety of 

measures.To be able to achieve this we can present 

the efficiency by tables. 

 

 

 

3 RESULTS 

 

We shall present our look at surface through 

consideration of a number of factors. We shall 

firstly consider surface in general for our data set, 

and how it compares by year. 

 

3.1 Preliminary Look 

 

To begin we looked at 2013 in terms of the 

service, breaks, aces, games and sets played. It is 

notable that such data is now available at this 

micro-level at ATP, WTA, and most challenger 

tournaments. It is feasible to obtain these statistics 

very easily via Tennis Insight. This data is 

navigable back to 2008. 

 

3.1.1 Match Effects by surface: 2013 

 

To consider the recency of performance, we 

investigated 2013 in detail. We isolated the three 

major surfaces, grass, clay and hard court. There 

were1443 clay matches, 1661 hard court and418 

grass matches in our set of data played at the ATP 

level on these surfaces. We found that Clay had 

clearly the lower quantity of games and sets per 

match, and the lowest number of tie breaks. Table 

1 exhibits the details. 

 

 Grass Clay Hard 

Sets/Match 2.64 2.43 2.54 

Games/Match 26.18 23.07 24.54 

TieBreak/Match 0.53 0.33 0.39 

TieBreak/Set 0.20 0.13 0.15 

Table 1: Rate of Match Statistics by Surface, 2013   

 

These results tend to indicate that Clay may well 

be a more predictable surface, and Grass less so. 

More games and sets are played on grass, and the 

numbers of tie-breaks are significantly higher than 

the other two surfaces. Inverting the Tie Break 

statistics gives us a raw estimation of a price for 

each likelihood, without consideration of over-

round, or players, as in Table 2. 

 

 Grass Clay Hard 

TieBreak/Match $1.90 $3.10 $2.60 

TieBreak/Set $5 $7.70 $6.70 

Table 2: Empirical Price by Surface. 

 

Considering the Service specifically reveals some 

interesting findings. Whilst we infer that from 

Table 1 Clay has ashorter match in terms of 

games, and possibly more predictable, it is 
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certainly not through server dominance. Table 3 

shows the service statistics by surface for 2013. 

 

Surface Gras

s 

Cla

y 

Har

d 

Sig. 

Aces per 

game 

.57 .34 .49 SS 

1
st
 Serve In .625 .615 .596 NS(GvC);S

S 

1
st
 Serve Win .730 .680 .713 SS 

2
nd

 Serve 

Win 

.512 .499 .502 NS(CvH); 

SS 

Serve Hold .814 .744 .777 SS 

BreakChance

s per game 

.50 .62 .56 SS 

Breaks Win 

per game 

.19 .26 .22 SS 

Table 3: Service Statistics by Surface for 2013 

 

Test of proportions on all pairings yielded 

significance (SS) with the exception of 1
st
 serve in 

for grass and clay. Service breaks are more 

possible and obtained on clay.  

 

 

3.1.2 Case Study: Rafael Nadal and Novak 

Djokovic – 2011. 

 

For interest, we isolated the matches of two of the 

best players of recent time. We selected 2011 as it 

was the year when both players had comparable 

exposure to both grass and clay. 

 

Let us first consider the Clay performance, as 

shown in Table 4. Considering the match statistics, 

both players have a similar success ratio, even 

down to the game level.  

 

Clay Nadal Djokovic 

Match 

W/L 
92% (24-2) 94% (17-1) 

Set W/L 85% (55-10) 83% (38-8) 

Gm W/L 63% (386-222) 63% (262-154) 

Grass Nadal Djokovic 

Match 

W/L 
80% (8-2) 100% (7-0) 

Set W/L 73% (24-9) 84% (21-4) 

Gm W/L 56% (180-139) 61% (142-89) 

Table 4: Match statistics by surface 

 

Looking at Table 5, we see the serving power of 

Djokovic, with his higher rate of aces per game on 

both surfaces. Notably, clay yields a much lower 

rate of aces than hard, as expected. No difference 

exists in double faults. Despite Nadal’s renowned 

dominance on clay, Djokovic holds serve with a 

higher rate. Grass overall provides higher rates of 

service holds than Clay. 

Clay Nadal Djokovic 

Aces per Gm 0.19 0.3 

DFs per Gm 0.1 0.12 

1st Serve % 70.30% 65.70% 

1st Serve W% 70.50% 74.00% 

2nd Serve W% 56.70% 59.10% 

Service Pts W% 66.40% 68.90% 

Service Hold % 83.40% 88.10% 

Grass Nadal Djokovic 

Aces per Gm 0.43 0.52 

DFs per Gm 0.1 0.14 

1st Serve % 69.50% 68.50% 

1st Serve W% 74.10% 77.40% 

2nd Serve W% 59.00% 59.00% 

Service Pts W% 69.50% 71.60% 

Service Hold % 86.60% 90.60% 

Table 5: Service statistics by surface. 2011. 

 

When considering Nadal’s return game, we see 

Nadal’s strength come through. Table 6 isolates 

this data. 

 

Clay Nadal Djokovic 

Opp. 1st Serve % 61.40% 63.40% 

1st Return W% 38.60% 36.00% 

2nd Return W% 61.30% 57.70% 

Return Pts W% 47.30% 43.90% 

BPs Won per Gm 0.44 0.37 

BP Chances per 

Gm 
0.9 0.81 

Break Pt W% 48.50% 46.00% 

Opp Hold % 56.10% 62.90% 

Grass Nadal Djokovic 

Opp. 1st Serve % 64.20% 63.30% 

1st Return W% 27.60% 32.90% 

2nd Return W% 55.60% 55.30% 

Return Pts W% 37.60% 41.10% 

BPs Won per Gm 0.25 0.31 

BP Chances per 

Gm 
0.54 0.66 

Break Pt W% 46.40% 47.30% 

Opp Hold % 75.20% 68.80% 

Table 6: Return statistics by surface, 2011. 
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Nadal’s ability to win on return on clay is his edge, 

with dominance on all statistics (over Djokovic) 

clear. He wins close to 50%. 

 

3.2 Longitudinal Approach 

 

We now consider the data set from 2003-2013 

inclusive. Figure 1 outlines the sample size. 

 

 
Figure 1: Matches in data set by year 

 

Our set of data reveal a fairly uniform amount of 

matches for this period, excluding 2014, and we 

now look at how the market modelled this period. 

 

3.2.1 Over-round 

 

Firstly, we look at the over-round for this time 

frame. Figure 2 below provides the 95% C.I. for 

the mean over-round per year. 

 

 
Figure 2: 95%CI for over-round by year by surface 

 

A notable trend is the decline in over round, 

suggesting a more accurate framing of the market, 

or a higher turnover allowing reduced margins for 

the bookmaker. Notably grass generally yielded 

the lowest over round. 

 

3.2.2 Upsets 

 

We now consider the favourite and underdog 

winning performance by year. Table 7 shows the 

wins by year by status. Here, a tied start price is 

defined as a Tie, and Favourite the player winning 

at a shorter start price than their opponent. 

 

Year Fave Tie UDog 

2003 66.6% 5.4% 28.1% 

2004 66.1% 3.7% 30.3% 

2005 69.1% 2.7% 28.1% 

2006 67.6% 2.7% 29.7% 

2007 70.6% 2.1% 27.3% 

2008 69.4% 1.6% 29.0% 

2009 69.8% 1.4% 28.8% 

2010 70.1% 1.4% 28.5% 

2011 72.5% 1.3% 26.3% 

2012 69.3% 1.0% 29.7% 

2013 68.6% 1.3% 30.1% 

Table 7: Wins by status by year 

 

What is evident in an improvement in the favourite 

winning, with the win % bubbling around 69% 

post 2004. There is a consistent reduction in 

matches starting at even money, and surprisingly 

2013 yielding the highest win rate for underdogs 

since 2004. 

 

 
Figure 3: Favourite/Tied/Underdogs by year 

 

Figure 3 shows the counts to provide some scale to 

these outcomes, with the evident reduction in even 

money start prices. 
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We now wish to consider if the surface has an 

impact on underdogs winning. We found for 2013 

that clay may yield more unpredictable results. 

 

Surface Fave Tie Underdog 

Clay 69.06% 2.06% 28.88% 

Grass 71.55% 2.06% 26.93% 

Hard 68.30% 2.28% 28.77% 

Table 8: Overall Favourite results by Surface 

 

Table 8 shows that both hard and clay yield more 

unpredictable results over the entire period than 

Grass.Splitting by surface by year, we now 

consider each of the winners. 

 

Firstly, we look at the pre-match favourite by year 

by surface. 

 

Year Grass Hard Clay 

2003 68.00% 66.00% 68.10% 

2004 70.00% 64.40% 68.40% 

2005 72.80% 68.60% 68.60% 

2006 70.40% 67.80% 66.10% 

2007 74.10% 71.00% 69.30% 

2008 72.10% 68.70% 70.50% 

2009 72.80% 70.60% 67.50% 

2010 68.10% 69.10% 72.80% 

2011 74.90% 73.20% 70.40% 

2012 70.50% 68.80% 69.80% 

2013 69.50% 68.30% 68.80% 

Table 9: Favourites win % by year by surface 

 

Table 9 above shows that Grass yielded the lowest 

number of proportional winners in only one year, 

2010. The squares indicate the lowest proportional 

wins by the favourite for that year. Hard and Clay 

have five each. Grass yields the most predictable 

results from the public price perspective. 

 

3.2 Winning from behind 

 

We considered all surfaces by comeback – that is – 

when a player was down one set within a match. 

There is little variation in the comeback factor – 

with Clay the lowest and Hard the highest. So, one 

in five matches yields a comeback. 

 

Wins from<=1 set down 

Surface Win Loss % 

Clay 1858 7826 19.2% 

Grass 666 2683 19.9% 

Hard 3013 12253 19.7% 

All 5768 23845 19.5% 

Table 10: wins from at least one set down 

 

Of greater interest is the underdog comeback. So 

we consider how often an underdog wins when 

going behind. Interestingly, the favourite wins 

17.4% of the time they go behind, yet the 

underdog wins more often, recording a win 24.8% 

of the time they lead then go behind. 

 

3.3 Market Efficiency 

 

Through banding of the winners pre-match 

probability of winning, we can ascertain possible 

inefficiencies in the market. We see in Table 11 

below all prices in our set by surface – i.e. not 

differentiated by year. 

 

 

Banding-

surface 
Clay Grass Hard 

0.00-0.05 2.1% 9.4% 0.0% 

0.05-0.10 4.6% 4.6% 4.4% 

0.10-0.15 6.8% 10.3% 9.5% 

0.15-0.20 16.0% 11.0% 13.7% 

0.20-0.25 20.8% 17.5% 17.9% 

0.25-0.30 21.8% 24.4% 25.0% 

0.30-0.35 29.2% 26.4% 30.1% 

0.35-0.40 32.7% 31.3% 34.4% 

0.40-0.45 40.5% 38.8% 40.0% 

0.45-0.50 43.3% 41.5% 43.6% 

0.50-0.55 48.2% 48.3% 48.4% 

0.55-0.60 52.8% 53.7% 53.6% 

0.60-0.65 58.1% 58.6% 57.3% 

0.65-0.70 62.9% 65.9% 61.6% 

0.70-0.75 69.3% 71.0% 68.2% 

0.75-0.80 73.7% 74.0% 73.0% 

0.80-0.85 80.0% 76.1% 78.3% 

0.85-0.90 80.1% 84.9% 83.6% 

0.90-0.95 90.1% 88.8% 87.7% 

0.95-1.00 95.4% 95.0% 96.1% 

Table 11: Banding by Surface 

 

If we classify each cell’s value as below (L) inside 

(O) or above (H) we note that Clay yields the most 

within band results, with Hard court the least. This 

is seen in Table 12 below. Across all analyses we 

see typically under-target strike rates and this can 

be attributed to, in part, the unadjusted allocation 

of the over-round. So to address this, we utilise the 

equal-distribution methodology to consider the 

over-round results. 
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Banding-

surface 
Clay Grass Hard 

0-0.05 O H L 

0.05-0.10 L L L 

0.10-0.15 L O L 

0.15-0.20 O L L 

0.20-0.25 O L L 

0.25-0.3 L L L 

0.30-0.35 L L O 

0.35-0.40 L L L 

0.4-0.45 O L L 

0.45-0.5 L L L 

0.5-0.55 L L L 

0.55-0.6 L L L 

0.6-0.65 L L L 

0.65-0.7 L O L 

0.7-0.75 L O L 

0.75-0.8 L L L 

0.8-0.85 L L L 

0.85-0.9 L L L 

0.9-0.95 O L L 

0.95-1 O L O 

Table 12: Classification of Banding 

 

If we were to use the equal distribution approach 

to redistribution of over-round (ie addition half of 

the over round to each player), we would see this 

improve to the results as seem in Table 13 below. 

 

Banding-

surface 
Clay Grass Hard 

0-0.05 H H O 

0.05-0.10 O O O 

0.10-0.15 L O O 

0.15-0.20 O L O 

0.20-0.25 O O O 

0.25-0.3 L O O 

0.30-0.35 O L O 

0.35-0.40 O L O 

0.4-0.45 O O O 

0.45-0.5 O L O 

0.5-0.55 O O O 

0.55-0.6 O O O 

0.6-0.65 O O O 

0.65-0.7 O O L 

0.7-0.75 O O O 

0.75-0.8 O O O 

0.8-0.85 O L O 

0.85-0.9 L O O 

0.9-0.95 O O O 

0.95-1 O O O 

Table 13: Inclusion of over-round (equal 

distribution) 

 

The redistribution of over-round now indicates a 

much different picture of efficiency, as seen in 

Table 13. Grass yields the least within band 

results; Hard court the most. However, overall the 

picture is far better than that shown in Table*. 

 

3.5 Predictability in differing tournament levels 

 

An interesting comparison is that of the favourites 

in ATP tournaments of lesser value. We define 

that as Non-Masters/Grand Slams- as at the time 

of publishing this equates to ATO 500 or less.  

 
 Clay Grass Hard 

 M+ NM M+ NM M+ NM 

Fave 71.7 67.5 76.5 67.0 70.0 67.7 

Tie 2.0 2.2 1.8 2.3 2.0 2.6 

Underdog 26.3 30.3 21.7 30.7 28.0 29.7 

Table 14: Masters and higher vs lower level 

tournaments 

 

What is clear is that the market yields a greater 

deal of predictability in Masters/Grand Slams 

results than smaller events. There is a 

systematically reduced predictability about the 

non-masters events. 

 

 

4 CONCLUSION 

 

In this paper, we found a number of prevailing 

factors. Firstly, clay has the lowest amount of 

games per match, and the lowest amount of tie-

breaks. Grass has significantly higher rates. Clay 

yields the lowest service success. It also has the 

highest amount of break opportunity. Clear 

example of this was seen with Nadal’s clay form. 

As found in other studies (Schembri& Bedford, 

2011), over-round is diminishing in tennis. NO 

real clear trend by surface exists, with some 

variability in the 2012 data. 

Around 69% of the time the favourite wins, 

however once this is broken down we find that this 

rises for Masters and Slams – dramatically for 

Grass.  

The comeback factor showed no surface bias. 

Finally, we noted that the post adjustment of 

probability for over round yielded a quite efficient 

market, especially above the 0.50 mark. 

Clearly, consideration of surface is needed for all 

modelling, and even more important is the 

consideration of the level of tournament. The large 

difference in predictability at masters v non 

masters begs for further investigation and 

integration into models. 
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Abstract 
 

A previous paper investigated using regression analysis and .exponential smoothing to create individual player 

ratings from doubles tennis results. The exponential smoothing method required both players’ ratings to be 

altered equally depending on whether the pair performed better or worse than predicted. This paper describes a 

simple algebraic transformation which makes allowance for the relative strength of a player’s partners. This 

results in a single measure of how a player performed against his direct opponent. This can then be used in a 

ratings program as if they were singles results. 
 
 

Keywords: tennis, exponential smoothing, player ratings 
 

 

 

 

1. INTRODUCTION 

 

At the second MCS conference I made a case for an 

adjustive tennis rating system based on margin of 

victory that rated players from a beginner to the 

world’s Number 1 (Clarke 1994). That paper 

suggested an exponential smoothing system, similar 

to the Elo rating system used in chess (Elo 1978). 

Unfortunately, while some work has been done, little 

progress has been made in implementing any 

practical system. Some papers have looked at how 

the method performs within a restricted range of 

player abilities. (Bedford and Clarke 2000) 

compared the performance of an exponential 

smoothing method with the ATP ranking in 

predicting the winner of each match in major 

tournaments. They found the method performed 

slightly better than the ATP rating for both 

predicting match winners and tournament seeding. 

(Clarke 2009; Clarke 2011) used the season’s results 

of a suburban doubles competition to rate all 52 

players in the section. An exponential smoothing 

method adjusts the rating up or down depending on 

how the result compares with that predicted by the 

ratings. Here the average of the two players’ ratings 

was compared with that of their opponents’, and 

each player adjusted by the same amount. The final 

ratings obtained had a high correlation with those 

obtained using regression analysis to optimise 

prediction of the set result. This demonstrated the 

method could be applied successfully to obtain 

individual ratings from doubles results. This is 

necessary for a rating system that hopes to rate all 

standards, as doubles play is the most common 

format in non-elite tennis. 

 

2 PREPROCESSING 

 

One disadvantage of the system investigated above 

is that both partners are rewarded/penalised to the 

same extent for a good/poor team performance. The 

adjustment to a player’s rating depends as much on 

his partner’s performance as on his own. However in 

many competitions it is possible to transform a 

player’s performance to allow for that of his partner. 

This paper suggests a method of removing the 

‘partner effect’ from a player’s score, to give a 

proper comparison of how he has gone against his 

direct opponent.   

 

Consider a simple team competition consisting of 

three players A, B &C. They play 3 sets, A&B, 

A&C, and B&C against the similar pairings of the 

opposition. Usually players measure how many sets 

or games they are up on the day. However the 
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performance of A over the day includes a 

contribution from B & C. Thus A could do well 

because his partners are much better than their 

respective opponents. But this advantage can be 

measured in the third set and subtracted from A’s 

results. Similar adjustments for B and C produces a 

measure of each player’s relative strength compared 

to his direct opponent, his contribution to the team 

winning margin. 

 

Thus a player’s adjusted games up  

= players actual games up – (partners winning 

margin)  

= Actual games up – (team winning margin – 

players actual games up)  

= 2*players actual games up – team winning margin. 

 

For example suppose the winning margins are 

 

A&B +6 

A&C +2 

B&C -2.  

Which results in the team winning by 6. 

 

Then A, B &C are respectively +8, +4, 0 up and C 

could convince himself he has come out even 

against his opposite number. Note 8+4+0=12, twice 

the team margin as each set is counted twice. 

However the adjustment above gives 10, 2, -6 

showing that C has clearly been outplayed by his 

opponent. Note that 10+2-6 = 6, the team winning 

margin. Note effectively we have solved the 

simultaneous equations a+b=6, a+c = 2, b+c = -2 to 

give a=5, b= 1, c= -3. Since each player plays two 

sets the contributions we calculated are twice these.  

 

The competition considered in (Clarke 2011) is a 

doubles competition is for teams of 4 men. The team 

is entered on the card in some order 1, 2, 3 and 4 

(usually, but not always, of decreasing ability) and a 

match consists of each of the 6 possible pairs (1&2, 

3&4, 1&3, 2&4, 1&4, 2&3) playing the 

corresponding pair from the other team in a first to 8 

(tiebreaker at 7 all) set. Thus each player plays 3 sets 

against his direct opponent, each of these including a 

different one of his teammates and his teammate’s 

direct opponent.  

 

Again, the principle is quite simple. A player’s total 

margin on his 3 sets includes a contribution from 

each of his other team members. But the total 

margin in the other 3 sets in which he is not involved 

includes 2 contributions from each of his team  

members. We therefore subtract half that margin 

from the player’s margin to obtain his individual 

performance measure.  

 

Algebraically, we assume each set margin is made 

up of a contribution from each player’s relative 

standard compared to his direct opponent. Thus if 

Player 1 is 4 games better than his opponent, and 

player 2 is 3 games worse the estimated result is4-3 

=  +1 or 8-7. If these 4 unknowns are a, b, c, & d 

then player 1’s total up on the day (call it player 1s 

total margin) will be estimated by 

(a+b)+(a+c)+(a+d) = 3a+ b + c+ d. To get the a we 

need to remove the b + c+ d. But the other 3 sets in 

which player 1 did not participate give a measure of 

(b+c) + (b+d) + (c+d) = 2 (b+c+d). Thus to get 3a, 

which is player 1’s contribution over the 3 sets we 

take his total margin minus half the total margins in 

the sets he did not play. Thus  

 

Adjusted margin   = (players total margin ) – ½( 

other 3 sets total margin)  

 

This is probably the easiest formula for an individual 

player to use and understand. For someone doing the 

calculation for all team members the following is 

probably better. 

 

Adjusted margin    

=(players total margin ) – ½( other 3 sets total 

margin)  

= (player’s total margin ) – ½( team margin – 

players total margin ) 

= ½( 3*player’s margin - team margin)  

 

Basically 3* players margin is 3*(3a+ b + c+ d) = 

9a+ 3b+3c+3d and if you take away the team margin 

= 3(a+ b + c+ d) you are left with 6a which is twice 

player 1s measure of superiority (ie 3a).  

 

So  

 

Adjusted margin  = ½( 3*player’s margin - team 

margin)  

 

This is quite easy to implement on a spreadsheet if 

you already calculate individual players up or down 

on the day.  

 

Note this is the same as that obtained by fitting the 

above additive model to the six set results using least 

squares. ie the estimates given by this simple 

arithmetic calculation are the same as would be 

obtained using regression analysis to minimise the 

errors in predicting the set margin using the 

algebraic sum of the players rating differentials. 
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2 APPLICATION 

 

Example: Scores are 82, 48, 82, 68, 68, 68 for a 

team margin of +2. Players are up 10, 2, 0, -8 

respectively (these add to 4, twice the team margin).  

Applying the above formula we get adjusted figures 

of 14, 2, -1, -13 (these add up to +2, the team 

margin).  

 

Note player 1 goes up as his partners are 

significantly worse that their opponents (they lost 

48, 68, 68). Player 4 goes down for the opposite 

reason (his partners won 82, 82, 68). Player 2 is 

unchanged as the sets he was not involved in (48, 

82, 68) came out level – as a group his partners were 

the equal of their opponents. 

 

Note this is not saying Player 1 is better or played 

better than Player 4. It just says that after removing a 

partner effect, on the day player 1 was 14 games 

better than his opposition number 1, whereas player 

4 was 13 games worse than his direct opponent. For 

all we know the opposition team number 4 may have 

been far better than their number 1. It also assumes 

that players play to the same standard from set to set 

– I wish that were true. But over a season one would 

expect those random fluctuations to even out.  

 

As a second example consider the scores 48, 48, 28, 

68, 28, 84 for a team margin of -18. Raw scores for 

players are -16, -2, -6, -12 (total -36) and it looks 

like all players have failed to hold their own. But 

adjusted scores of -15, 6, 0, -9 (total -18) show that 

player 3 has held his own, player 2 is up, and the bad 

loss is all down to players 1 and 4 being badly 

beaten by their respective opponents.  

 

Player Sets played Games up 
Adjusted 

Games up 

EC 33 36 21.5 

GM 24 -7 -19 

SC 27 44 34 

GB 33 43 45 

JZ 27 -6 -26.5 
Table 1. Individual players season results.  

 
These adjusted figures can be used simply as a better 

measure of a players performance against his direct 

opponent, or as input to further analysis. For 

example they could be used as input to a regression 

analysis. The first 4 columns of table 1 are from 

(Clarke 2009) and show the season’s totals for the 

raw figures for each team member for the data as 

presented in (Clarke 2011). The final 2 columns 

show the figures obtained by applying the 

adjustment suggested above. Remembering that on 

average the adjusted figures will be half the raw 

figures (since each set is counted once rather than 

twice), the dominance of GB and lack of same for 

GM and JZ is highlighted by the adjusted figures. 

 

 

3 EXPONENTIAL SMOOTHING 

 

Clarke(2011) used a full regression analysis on the 

complete association set results (276 observations) 

which allowed for the individual players playing and 

a home advantage to obtain player ratings. This was 

used as the ‘gold standard’ and the ratings obtained 

compared to those using an exponential smoothing 

method.  

 

Exponential smoothing operates by adjusting 

player’s ratings depending on a comparison of the 

predicted and actual set result. As the previous 

smoothing method used the 276 set results, the 

adjustment had to be shared equally between the two 

partners. Nevertheless the correlation between the 

final season ratings and the ‘gold standard’ using a 

smoothing constant of 0.2 was 0.76 when initial 

ratings were set to zero, and 0.81 when initial ratings 

were based on position first played.  

 

Here we can use the adjusted figures to smooth each 

player’s ratings directly against his opponent. The 

data set reduces by a third to 184 (since we are using 

the days 4 adjusted games up rather than 6 set 

results). The final ratings give a correlation of 0.83 

and 0.84 with the regression ratings depending on 

whether initial ratings are set to zero or depend on 

position first played, both slightly higher than those 

obtained using the set results.  

 

 

4 CONCLUSION 

 

In many doubles competitions it is possible to make 

a simple adjustment that removes the partner effect 

and produces a proper comparison between a player 

and his direct opponent. This could then be treated 

in a similar manner to singles results in any rating 

system. Here we show it gives reasonable results in 

an exponential smoothing system. 

 

As well as giving better results, this method has the 

advantage that not all 4 players involved in the 

match have to be in the rating system. The effect of 

each player is isolated against his direct opponent, so 

a player and his direct opponent’s rating can be 
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adjusted even if ratings for the other players are not 

available. This might be important in the 

implementation of any universal rating scheme, 

where it would be expected, particularly in lower 

standard matches, that many players may not have a 

rating.  

 

 

References 

 
Elo, A. E. (1978). The rating of chess players, past and 

present. London, Batsford. 

Clarke, S. R. (1994). An adjustive rating system for tennis 

and squash players. Second Conference on Mathematics 

and Computers in Sport. N. de Mestre. Gold Coast, Qld., 

Bond University: 43-50. 

Bedford, A. B. and S. R. Clarke (2000). A comparison of 

the ATP ratings with a smoothing method for match 

prediction. Proceedings of the Fifth Australian 

conference on Mathematics and Computers in Sport. G. 

Cohen and T. Langtry. Sydney, University of 

Technology Sydney: 43-51. 

Clarke, S. R. (2009). Using team doubles competition 

results to rate non-elite tennis players. Second 

International Conference on Mathematics in Sport. R. 

Koning and P. Scarf. Groningham, The Netherlands, 

The Institute of Mathematics and its Applications: 42-

46. 

Clarke, S. R. (2011). Rating non-elite tennnis players 

using team doubles competition results. Journal of the 

Operational Research Society 62(7): 1385-1390. 

 

 



 

95 

ALTERING THE PROBABILITY OF WINNING A POINT ON 

SERVE FOR THE MOST AND LEAST IMPORTANT POINT IN 

TENNIS 

 
Michelle Viney and Anthony Bedford  

 

School of Mathematical and Geospatial Sciences 

RMIT University, Melbourne, Australia 

Corresponding author: michelleanne.viney@rmit.edu.au 

 

 

Abstract 

Whether the probability of winning a point on serve should be considered constant or variable remains 

debated. Newton and Aslam (2006) addressed this question by altering the probability on the most and least 

important point in the game by an arbitrary value of twenty percent. In conclusion, they found that varying 

probabilities does not dramatically alter the probabilities predicted from a pure iid model. A limitation of 

Newton and Aslam’s research is they selected an arbitrary value of twenty percent without any verification, 

where this paper will provide analysis on the effects of selecting various values. This research extends on 

Newton and Aslam’s work by evaluating the effectiveness of varying the winning probability of a point on 

serve. The results indicate that the degree of change impacts the likelihood of winning the set and/or match. 

 

Keywords: Importance, point probability, tennis. 

 

 

1.INTRODUCTION 

Tennis is a popular sport as a spectator, recreational 

activity and also for sport modellers. Mathematically 

speaking, the game of tennis is an attractive sport to 

model as there are only two players to take into 

consideration. Various models have been developed 

to forecast the winner of the match. Typically, these 

models assume the probability of winning a point on 

serve is independent and identical distributed (iid), 

where the probability remains constant for the entire 

match (Barnett and Clarke 2002, Carter and Crews 

1974, Fischer 1980 and Schutz 1970). Much debate 

surrounds the issue of assuming iid (Jackson and 

Mosurski 1997 and Klaassen and Magnus 2001). 

Klaassen and Magnus (2001) found that winning the 

previous point has a positive effect on winning the 

current point, and those “important” points are more 

difficult to win for the server than less important 

points. 

Various studies have analysed the effect of altering 

the probability of winning a point on serve (see 

Morris 1977, O’Donoghue 2001, Pollard and Noble 

2002, 2004 and Viney, Bedford and Kondo, 2013). 

Overall, the results found that expending more 

physical and mental effort on important points and 

relaxing on unimportant points increases the chances 

of winning the game. Morris (1977) developed an 

approach to calculate the importance levels at a 

point, game, set and match level using the Markov 

Chain model. Importance of a point is defined as the 

difference in the probability of winning and losing 

the current point (Morris, 1977). Morris outlined that 

increasing the probability of winning a point on 

serve from 0.60 to 0.61 on the important points and 

decreasing from 0.60 to 0.59 on the unimportant 

points resulted in increasing the probability of 

winning the service game by 0.0075. 

Extending this concept, Newton and Aslam (2006) 

applied a Monte Carlo simulator to determine 

whether increasing or decreasing the probability of 

winning a point on serve on the most and least 

important point by twenty percent was more 

effective than the iid Markov Chain model. Newton 

and Aslam found that this approach increased the 

probability of winning greater than the pure iid 

model (Markov Chain) as the most important point 

occurs more frequently. The overall conclusion of 

this research was that varying probabilities does not 

dramatically alter the probabilities predicted from a 

pure iid model. While the iid assumption is not 

perfect, in practise, it appears to perform quite well 

and the inclusion of non-iid models may introduce 

unanticipated problems (Newton and Aslam, 2006). 

mailto:michelleanne.viney@rmit.edu.au
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A limitation of Newton and Aslams research is they 

selected an arbitrary value of twenty percent without 

any verification. Thus, the aim of this research is to 

empirically validate Newton and Aslam’s findings 

and to perform an extensive analysis on the effect of 

altering the probability of winning a point on serve 

at various intensities.  

 

2. METHODS 

The main objective of this paper is to validate and 

perform an extension analysis on Newton and 

Aslam’s (2006) research. Newton and Aslam 

developed a tennis Monte Carlo simulator, where a 

random generating value is produced to determine 

the winner of each point in the match. Newton and 

Aslam altered the probability of winning a point on 

serve using the concept of point importance. How 

important the current point is in relations to a point, 

game, set and match level can be calculated using 

the Markov Chain model, which was developed by 

Morris (1977). Point importance is the difference 

between the probability of the server winning and 

losing the current point (a,b), which is represented as 

follows: 

 

                         

                   (1) 

 

To alter the probabilities, they adjusted Player A’s 

probability to win a point on serve by an arbitrary 

value of twenty percent on the most important point 

in the game, 30-40 and decreased by the same value 

on the least important point, 40-0. Once the point 

has concluded the probability returned to the initial 

value for the next point. It’s important to note that 

the least important point only occurs once in the 

game, though the most important point can occur an 

infinite number of times as, for example 30-40 is 

equivalent to 40-Ad. 

To replicate Newton and Aslam’s work a Monte 

Carlo simulator was developed using @Risk, an 

add-on for Microsoft Excel (Viney, Kondo and 

Bedford, 2012). To determine whether adjusting the 

probabilities by twenty percent is the most effective 

approach, various arbitrary values were 

implemented. Probabilities were adjusted by 

quantities of 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.  

To determine the effectiveness of all approaches it 

was compared against the Markov Chain model, 

where the probability of winning a point on serve 

remains constant for the entire set, due to the 

assumption of independence and identical 

distribution (iid). The Markov Chain model is 

typically used to predict outcomes of tennis matches 

before and during the match. Barnett, Brown & 

Clarke (2006) applied the properties of the Markov 

Chain to derive a recursive formula to calculate the 

probability of winning from any state within a game, 

set and match. 

 In terms of a game, the probability of Player A 

winning the game at point score       is given by:

  

  
             

             

       
            (2) 

 

with boundary conditions: 

 

  
            if         

  
            if         

  
          

  

         
, 

 

where p is the probability of Player A winning a 

point on serve which remains constant for the entire 

match. 

In similar fashion, the probability of either player 

winning a tiebreak set can be calculated using a 

Markov chain. Let   
           represent the 

conditional probability of Player A winning a 

tiebreak set from game score       when Player A is 

serving. It is expressed as followed: 

 

  
             

      
             

      
       

              (3) 

 

with boundary conditions: 

 

  
             if                   

  
             if                   

  
             

         , 

 

where   
    represents the probability of Player A 

winning a game on serve and   
         represents 

the probability of Player A winning a tiebreak game. 

For a detailed explanation, see Barnett, Brown & 

Clarke (2006). 

 

3. RESULTS 
To determine whether adjusting the probabilities by 

twenty percent on the most and least important point 

is the most effective approach, various values were 

implemented. Probabilities were adjusted by 

quantities of 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. 

Adjusting Player A’s probability of winning a point 

on serve at (30-40) is as follows: 

 

                                        (4) 

 

where    0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. 
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Adjusting Player A’s probability of winning a point 

on serve at (40-0) is as follows: 

 

                                       (5) 

 

where   0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. 

Traditional point scoring format of 0, 15, 30, 40 and 

game is represented as 0, 1, 2, 3, and 4, respectively. 

 

For example, when Player A has reached the score-

line 40-0 and theta is 0.30, the player will decrease 

in performance by thirty percent. While at the score-

line 30-40 and 40-Ad, Player A will increase in 

performance by thirty percent. Theta did not exceed 

thirty percent, as the player should already be 

playing at a substantial level to have a chance to win 

the match and increasing more than thirty percent 

would be deemed an unreachable target.  

Table 1 displays a comparison of all approaches in 

altering the probability of winning a point on serve 

in a game situation. The theta value selected 

determines the amount of change in probability. The 

higher the theta value the larger the difference of 

change. 

 

Table 1: A comparison between all approaches of 

the adjusting the probability of winning a point on 

serve in a game 

Score Markov 
Theta Value 

0.05 0.10 0.15 0.20 0.25 0.30 

0-0 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

15-0 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

30-0 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

40-0 0.60 0.55 0.50 0.45 0.40 0.35 0.30 

40-15 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

40-30 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

40-40 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

40-Ad 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

 

Analysis was initially performed to outline the effect 

of altering the probability of winning a point on 

serve by a particular value. Morris (1977) analysed 

the effect and gains achieved on increasing effort on 

different points in a game. 

The effect of Player A increasing effort on the most 

important point in the game at 30-40 in respect to 

winning a service game, when Player A’s 

probability of winning a point on serve is 0.60, is as 

follows: 

 

  
             

           

                  (6) 

 

where   is the effort contributed where             
at every 0.01 interval,        is the expected number 

of times (2,3) is played in one game,        0.443 

and        is the importance of the point in the game 

at (2,3),               . Player A’s probability of 

winning a point on serve = 0.60. 

 

The effect of decreasing effort on the least important 

point in the game at 40-0 in respect to winning a 

service game, when Player A’s probability of 

winning a point on serve is 0.60, is as follows: 

 

  
             

           

                  (7) 

 

where   is the effort contributed where             
at every 0.01 interval,        is the expected number 

of times (3,0) is played in one game,         0.216, 

and        is the importance of the point in the game 

at (3,0),               . Player A’s probability of 

winning a point on serve = 0.60.  

 

For a full explanation of the process and how        

is calculated refer to Morris (1977). To determine 

the effect of altering the probability of winning a 

point on serve, the initial probability was set at 0.60 

and    the effort contributed, ranged from zero to 

0.30, at every 0.01 interval. Figure 1 displays the 

effect on Player A winning a standard service game 

when either increasing and/or decreasing their 

probability at the most and least important point. 

The combine line in Figure 1 represents the effect of 

adjusting both the probability on the most and least 

important point. Player A’s starting probability was 

0.60 which results in the probability of winning a 

service game of 0.7357. As represented in Figure 1, 

as the effort increases on the most important point, 

the greater the probability of winning a game in 

comparison to decreasing effort on the least 

important point. For example, if a player decides to 

increase his performance by twenty percent on the 

most important point at 30-40, it results in increasing 

their probability of winning the game from 0.7357 to 

0.7970. Whereas decreasing by the same amount 

alters the probability of winning the game from 

0.7357 to 0.7336. Overall, with every 0.01 

incremental change of probability to the most/least 

important point results in an increased probability of 

winning a standard service game by 0.003, when the 

initial probability was 0.60.  
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Figure 1: The effect of adjusting the probability of 

winning a point on serve at the most, least and 

combining both most and least important point in a 

standard service game. 

 

Simulation analysis was performed to determine the 

effect of adjusting the probability of winning a point 

 

on serve in respect to winning the first game and set. 

Ten thousand simulations were performed at the 

commencement of the set with Player A serving 

first. Ten thousand simulations were chosen as 

Viney, Kondo and Bedford (2012) found that 

simulating greater than ten thousand points, 

decreased the error rate. Both players’ starting 

probability to win a point on serve was 0.60, where 

Player A’s probability is altered on the most and 

least important point in the game by 0.05, 0.10, 0.15, 

0.20, 0.25 and 0.30. To compare the effects of 

altering different numerical values, all simulations 

were linked together, so the same simulated value is 

applied for accurate analysis. Table 2 displays the 

difference in adjusting the probability of winning a 

point on serve in respect to the most and least 

important point. Player A is assumed to win the first 

service game and set. Table 2 represents a linear 

relationship whereas theta increases the probability 

of Player A winning their service game and set both 

increase. For example, when adjusting the 

probabilities by twenty percent, Player A’s 

probability to win their service game and set was 

0.804 and 0.602, respectively.  

 

Table 2: Comparing the difference after adjusting the probability to win a point on serve in respect to Player A 

winning their first service game and the set. 

 
Markov 0.05 0.10 0.15 0.20 0.25 0.30 

Wins 1st service game 0.733 0.749 0.768 0.783 0.804 0.825 0.852 

Wins set 0.499 0.518 0.541 0.570 0.602 0.638 0.678 

 

To determine how each approach performs when a 

player enhances or deteriorates in performance, 

streaking analysis was carried out. Streaking 

analysis is a concept applied in the simulator to alter 

Player A’s performance by a particular value. Player 

A’s performance was altered to both increase and 

decrease at a level of two, four, six, eight and ten 

percent. This streaking effect can be applied to any 

phase of the match, but for this research streaking 

was applied for the entire match. 

 

Player A’s increasing streaking effect is represented 

as follows: 

                                   (8) 

 

and Player A’s decreasing streaking effect is as 

follows: 

                                  (9) 

 

where                               . 

 

 

 

To analyse the effect of streaking, both player’s 

initial probability of winning a point on serve was 

0.60 and only Player A’s probability was adjusted. 

This approach also implements the process of 

altering the probabilities on the most and least 

important point by various theta values. Table 3 

displays the streaking effect for Player A, when the 

initial probability of winning a point on serve is 0.60 

with a streaking effect of four percent and Theta at 

0.05. For example, at the least important point in the 

game, 40-0, regardless which direction we alter 

performance, the probability is decreased by five 

percent due to the point being the least important in 

the match. Thus, the updated probability to win a 

point on serve is 0.59 and 0.51 for increasing and 

decreasing performance at four percent, respectively. 
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Table 3: An example of streaking analysis with a 

streaking effect of four percent with theta increasing 

by 0.05 when the probability of winning a point on 

serve is 0.60. 

Score Normal Increase Decrease 

0-0 0.60 0.64 0.56 

15-0 0.60 0.64 0.56 

30-0 0.60 0.64 0.56 

40-0 0.60 0.59 0.51 

40-15 0.60 0.64 0.56 

 

Table 4 displays the streaking effect on all 

approaches with different streaking intensities. It 

represents a linear relationship where as you 

increase the streaking value the larger the difference 

recorded. For example, when altering the probability 

by twenty percent with a streaking effect of ten 

percent, the decrease difference is 0.344 as opposed 

to 0.245 for the increased difference. Comparing 

between increasing and decreasing performance, the 

results shows that overall the streaking effect 

difference is greater when decreasing Player A’s 

performance. It’s interesting to note that as we 

change from a decrease to an increase in 

performance, the ranking of difference changes. For 

example, when Player A’s performance decreased, 

Markov and 0.05 recorded the lowest difference, 

whilst as the performance increased greater 

differences emerged. 

 

 

 

Table 4: Streaking effect on increasing and decreasing performance 

Approaches 
Streaking effect 

-0.10 -0.08 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 0.10 

Markov 0.320 0.257 0.201 0.150 0.071 0.071 0.132 0.191 0.242 0.290 

5 0.318 0.257 0.203 0.147 0.069 0.070 0.129 0.190 0.239 0.273 

10 0.327 0.262 0.202 0.144 0.071 0.070 0.131 0.183 0.237 0.262 

15 0.333 0.264 0.204 0.147 0.070 0.074 0.133 0.180 0.224 0.256 

20 0.344 0.275 0.207 0.149 0.067 0.071 0.123 0.171 0.215 0.245 

25 0.354 0.275 0.210 0.138 0.062 0.066 0.121 0.164 0.199 0.236 

30 0.359 0.278 0.211 0.139 0.058 0.059 0.112 0.149 0.180 0.213 

4. DISCUSSION 

To obtain a full understanding of how all approaches 

forecast the outcome of a match, a case study was 

applied. Ten thousand simulations were performed 

at the completion of each service game in the match. 

The case study chosen was when Mikhail Kukushkin 

was the underdog and defeated Andreas Seppi 6-1, 

1-6, 6-4, in the semi-finals at the Kremlin Cup in 

Moscow. Figure 3 compares all approaches to win 

the match at all game scores in the match. Overall all 

approaches follow the same trend with the Markov 

Chain model for the entire duration of the match. 

For a deeper analysis on the relationship of all 

approaches in this case study, we performed analysis 

one set at a time. 

At the commencement of the first set, Kukushkun 

started as the underdog and won the first set 6-1. 

Kukushkun only lost three points on serve, whereas 

Seppi lost eleven. All theta values followed the same 

trend as the Markov model (Figure 3). The absolute 

average difference from the Markov model for the 

entire set was 0.004 to 0.014 for Theta 0.05 to 0.30, 

respectively. Kukushkin won both of his first two 

service games of the match without losing a point. 

After the completion of Kukushkin’s second service 

game, the Markov model recorded the largest 

difference of the probability of winning the match at 

the commencement of the match of a difference of 

0.05 and Theta 0.05 recorded the second largest 

difference at a value of 0.04. Thus in this scenario, 

no cases accurately reflected Kukushkin’s current 

performance from pre match predictions. At 2-1, 

Kukushkin broke Seppi’s serve and Theta 0.20, 0.25 

and 0.30 recorded the maximum difference from the 

Markov model at a value of 0.021, 0.030 and 0.031, 

respectively. At the completion of the set all models 

increased Kukushkin’s probability of winning the 

match by an average of 0.281, with an average 

increase difference from the Markov model of 0.009. 
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Figure 3: Kukushkin’s (Player A) probability to win the match at all game scores in the match. 

 

 

In respect to the second set, Seppi’s form improved 

and only lost three service points on serve, while 

Kukushkin lost thirteen points. Seppi won the set 6-1 

and broke Kukushkin’s serve twice, at 0-1 and 0-3. 

At the first break of serve, the larger the theta value 

the larger the difference of change in Kukushkin’s 

probability of winning the match, with a difference 

of 0.008 to 0.041 from Theta 0.05 to 0.30. Although, 

at the second break of serve, all approaches 

decreased Kukushkin’s probability of winning the 

match by on average 0.05. 

In the third and final set there were a total of seven 

breaks of serves, where Seppi lost four and 

Kukushkin lost three. In all breaks of service, the 

larger the theta value the larger the difference in 

change of Kukushkin’s probability of winning the 

match. For example, Kukushkin lost his first service 

game at the commencement of the third set, where 

the Markov and Theta 0.05 alter the probability by 

0.207 and 0.213, respectively. While, Theta 0.25 and 

0.30 altered the probability by 0.254 and 0.275, 

respectively.  

In this case study all theta approaches altered 

Kukushkin’s probability of winning the match in 

respect to breaks of service games, though no 

approach took into consideration how the service 

games were won. For example, a server winning 

their service game losing zero points is performing 

at a greater level than a server winning their service 

game from deuce. In respect to this case study 

Kukushkin won two consecutive service games at 

the eighth and fourth deuce. This indicates that he 

was struggling to hold serve and consequently lost 

his next service game to love.  

In conclusion, this case study demonstrated that 

when a break of service occurs, the larger the theta 

value the larger the difference of change in the 

probability of winning the match. However, no 

approach displayed an accurate indication of how 

the player was performing in the match. For 
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example, if a player was winning their service game 

by losing zero or five points.  

This research has provided valuable insight into the 

effect of changing the probability of winning a point 

on serve. Future research should determine the effect 

of updating the probability of winning a point on 

serve after every service point. This approach aims 

to increase the accuracy of forecasting to obtain a 

precise indication of how players are performing on 

the day. Although no optimal value can be selected 

from this research, this research displays a thorough 

understanding of the effect of altering the probability 

of winning a point on serve for a range of values. 
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Abstract 

 

This paper determines when the draw should be predicted for English Premier League football. Roughly one in 

every four matches in the English Premier League ends in a draw, so it would be a great boost to the predictive 

power of an Elo model to have a methodology of predicting the draw that is reliable. Initial research showed a 

consistency in draws over time, suggesting they may be predictable. However the banding of probabilities 

showed that draws were similarly likely across many probability bands, and that only one market-based band 

had a draw likelihood that exceeded a one in three chance. Three strategies were tested against a control of 

never picking the draw, with never picking a draw being the clear standout. Optimisation of these strategies 

resulted in marginally superior predictive power by restricting the draw prediction to tiny ranges that captured 

unusually high numbers of draws. Ultimately, it was deemed to be of no advantage to predict the draw. 

 

Keywords: football, Elo model, draw, optimisation 

 

 

 

1. INTRODUCTION 

In the English Premier League, matches have three 

possible results. These are the home team winning, 

the away team winning, or a draw. This paper aims 

to improve the predictive ability of an Elo model 

by implementing a system which can predict when 

draws will occur on top of determining whether the 

home or away team is more likely to win.  

If all English Premier League matches from the 

opening day of the 2002-2003 season to March 2
nd

 

2014 are collated and the number of matches that 

resulted in draws are counted, it’s seen that 1149 of 

the 4456 matches in that timeframe have ended in 

draws. This is a considerable number of matches, 

equating to slightly over one in every four matches. 

As a result, the maximum percentage of correct 

predictions for a model that predicts win vs loss is 

under 75%. To improve this percentage, there 

needs to be a methodology for reliably predicting 

draws. The aim of this paper is to determine 

whether such a methodology exists when it comes 

to predicting matches using an Elo model.  

Before the development of the methodologies for 

when to predict draws, it is important to look at the 

statistics of when draws occur. The table below 

shows the proportions of drawn matches in each 

season in the dataset.  

Season Draws Matches % 

203 90 380 23.68% 

304 108 380 28.42% 

405 110 380 28.95% 

506 77 380 20.26% 

607 98 380 25.79% 

708 100 380 26.32% 

809 97 380 25.53% 

910 96 380 25.26% 

1011 111 380 29.21% 

1112 93 380 24.47% 

1213 105 380 27.63% 

1314 64 276 23.19% 

Total 1149 4456 25.79% 

Table 1: Draws Split by Season 
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The season with the most draws is the 2010-2011 

season with 111 drawn matches, very closely 

followed by the 04-05, 03-04 and 12-13 seasons. 

2005-2006 clearly has the least draws, with just 77 

matches ending level. No other season has had less 

than 23% of matches end in a draw, with the 

closest being the in-progress 2013-2014 season. It’s 

clear that this number is fairly consistent from 

season to season, with no real trend in the data.  

Next, it’s worth checking whether draws are more 

likely to occur at a certain time in the season. The 

following table shows the proportions of draws in 

each month of competition for the EPL. 

Month Draws Matches % 

8 95 383 24.80% 

9 106 400 26.50% 

10 110 427 25.76% 

11 132 483 27.33% 

12 172 664 25.90% 

1 121 465 26.02% 

2 109 420 25.95% 

3 76 403 18.86% 

4 158 518 30.50% 

5 70 293 23.89% 

Total 1149 4456 25.79% 

Table 2: Draws Split By Month 

This table suggests that during the majority of the 

season, the percentage of draws remains quite 

constant. There are two values that are slightly 

different from the typical proportion, which are the 

18.86% for March and the 30.5% for April. The 

initial reaction to this was that due to more matches 

being played in April, fatigue may have been 

causing matches to be more likely to end in draws, 

while for March due to comparatively less matches 

being played teams were better equipped to get a 

result. However, when looking closer at the number 

of matches played, March is not too dissimilar to 

the other lower volume months, and April is far 

from being the most matches in any month. Thus, 

in absence of any logical reason for these 

deviations, it’s assumed that these values are 

merely a statistical quirk rather than a factor that 

needs to be considered.  

2. MODEL AND MARKET BANDING 

As it’s been established that there are no key 

factors that need to be controlled for in the draw 

predictions, the next stage is to compare how the 

draw is distributed for the Elo model versus the 

market predictions in the form of betting odds. 

Firstly, the 3-way result probabilities are viewed to 

determine whether the market ever predicts a draw. 

The interesting thing is that in the 4456 matches 

catalogued in the dataset, on only one occasion did 

the market predict that the draw was the most likely 

result. This was the match of Stoke hosting West 

Brom on 16/03/13, for which bet365 offered odds 

of $2.80 for a Stoke win, $3.25 for a West Brom 

win, and $2.75 for a draw. This corresponds to a 

35.357% probability of a draw after accounting for 

the bookmaker’s margin. This match ended in a 

draw as expected, with the final score being 0-0. 

According to the Elo model this was a 55-45 

matchup and according to the 2-way market a 54-

46 matchup in favour of Stoke, so it is quite an 

even match up. However, there are numerous 

matches which according to these probabilities are 

more even, so it’s quite odd that just this one match 

has the draw as the favourite. It suggests that the 

draw may in fact be too unreliable to be predicted 

with any confidence whatsoever. 

The next stage is to compare how the draws are 

distributed for both the 2-way market model and 

the Elo model. The following graph shows the 

frequency of draws for both of these models. 

 

Figure 1: Frequencies of draws in each probability 

band for 2-way market model (oddsdraw) and Elo 

model (model draw). 

The most draws occurred in the 0.65-0.7 band for 

the Elo model (143 drawn matches), and the 0.6-

0.65 band for the 2-way market model (140 drawn 

matches). It is interesting that the number of draws 

seems to be centred roughly on the home ground 

advantage adjusted probability. As this is just the 

total number of draws for each band, the proportion 

of draws needs to be checked to determine whether 

this is just being skewed by the number of matches 



 104 

in each band. The proportion of draws in each band 

is shown in the graph below. 

 

Figure 2: Proportions of draws in each probability 

band for 2-way market model (oddsdraw) and Elo 

model (model draw). 

It is clear that when correcting for the number of 

matches there is no longer a point where the draws 

have a peak. The 2-way market has a slight 

increase for matches just under 0.5, but this is not 

particularly significant. The Elo model appears to 

be over-represented for draws in matches where 

there is a very strong favourite either home or 

away, however it’s important to note that this is 

primarily due to a relatively small sample size in 

these bands. Overall, there’s a slight quadratic 

curve to the percentages of draws, with the edge 

cases typically being less likely to have a draw, and 

the central cases having similar proportions of 

draws. This does not bode well for attempts to 

predict the draw as there is only a single band that 

exceeds a one-in-three chance of a draw occurring, 

which is the 2-way market for matches with home 

win probabilities between 0.45 and 0.5.  

Finally, the draw probability according to the odds 

is compared to the home versus away split is 

analysed. The primary purpose of this is to be able 

to develop a probability of drawing from the Elo 

model. The following graph is a scatter plot of 

home win probability minus away win probability 

versus draw probability. 

 

Figure 3: Scatter plot comparing the home-away 

probability differential to the probability of a draw 

according to the market 

This plot shows a clear quadratic trend for draw 

probability when compared to the home-away 

differential. The line of best fit is Pr(Draw) = -

0.245x
2
 + 0.0025x + 0.3142, where x equals the 

difference between the win probability of the two 

teams. Using this equation, the probabilities that 

are generated by the Elo model can be converted to 

include a draw probability. So, using this equation, 

a match in which the two teams have an equal 

probability of winning will have a 0.3142 

probability of drawing the match. These 

probabilities will be used for one of the prediction 

strategies outlined below. 

Initial Draw Prediction Strategies 

There are three initial strategies that’ll be used to 

predict the draw. These strategies are as follows; 

 pick the draw for the middle 25% of 

probabilities (matches with win 

probabilities between 0.375 and 0.625)  

 pick the draw for the middle 25
 

percentiles (matches with win 

probabilities between the 37.5
th
 and 62.5

th
 

percentile, corresponding to matches 

between 0.577 and 0.699 win probability 

for the home teams) 

 pick the draw for the 25% of matches 

with the highest draw probability 

according to the line of best fit to the 

market odds  

These strategies are based upon the fact that 

roughly 25% of matches end in a draw, so if the 

draw is perfectly predictable 25% of matches 

should be predicted as a draw. The results of this 

initial strategy are shown in the table below. 
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  Strike Rate 

No draw 52.244% 

Middle 25% Pr 49.753% 

Middle 25th Percentile 48.654% 

Upper quartile draws 50.135% 

Table of strike rates for initial draw prediction 

strategies 

It is interesting to see that each of these strategies 

performs worse than never predicting the draw. The 

best performed of the strategies that picks draws 

was the upper quartile draws, followed by the 

matches with draw probabilities between 0.375 and 

0.625, and worst performed was the middle 25
th

 

percentile. Clearly too many matches are being 

predicted as draws, so in the next step the range 

and where the predictions should be centred will be 

optimised. 

3. OPTIMISED DRAW PREDICTIONS 

Using the @Risk software, the optimal strike rate 

for each strategy was search for. This was done by 

changing the spread of matches that were predicted 

as draws and in the case of the middle 25% and 

middle 25
th

 percentile where that spread was 

centred. 10000 iterations were done, and the results 

of this optimisation can be seen in the table below. 

 Strike 

Rate 

Spread Centre 

No draw 52.289% 0 NA 

Middle x% Pr 52.513% 0.00265 0.526 

Middle xth 

Percentile 

52.536% 0.00295 0.524 

Upper x percentile 

draws 

52.311% 0.00023 NA 

Table of optimised draw predictions 

Here each of the various draw prediction strategies 

exceeds the strike rate of never predicting the draw. 

This appears to suggest that the draw should in fact 

be predicted sometimes. However, note the 

extremely small spreads of matches being predicted 

as draws. For example, the middle x% pr is 

predicting draws in matches where the home team 

has a win probability between 0.523 and 0.529. 

This is a tiny section of matches, a mere 43 (<1%) 

of the 4456 in the data set. This suggests that 

predicting the draw for this section of matches isn’t 

actually a good strategy, rather a lucky one that just 

happens to encapsulate a small cross-section of 

matches that has an abnormally high proportion of 

draws.  

Based upon these optimisation results, it seems 

clear that using the Elo model as a basis for draw 

predictions is not a strategy that is reliably better 

than simply never picking the draw. Occasionally, 

one might get lucky and stumble upon a very small 

pocket of matches which happens to have a greater 

than typical draw probability, but ultimately 

attempting to predict the draw in this manner is not 

beneficial. In other words, the draw is an event that 

cannot be predicted with any confidence. This 

validates the market solution of almost never 

predicting the draw.  

4. CONCLUSION 

The draw is a frequent event in the English Premier 

League. It’s a fairly constant variable from season 

to season, and month to month. This consistency 

suggested that predicting the draw may be possible, 

as there are no major variations in the probability 

of the draw. However, further analysis showed that 

there were no bands of probability where the draw 

became more likely than the probabilities of one of 

the two teams to win. Notably only one band 

exceeded a one in three probability, which was the 

0.45-0.5 market band. Three strategies to predict 

the draw roughly 25% of the time where tested 

against a strategy of never predicting the draw, and 

all fell considerably short. The three strategies were 

optimised for maximum strike rate, but were only 

marginally better than the no draw strategy due to 

finding an extremely small band where an 

abnormally high proportion of draws occurred. 

Thus the best strategy of predicting the draw is in 

fact to not predict the draw at all.  
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Abstract 
Photos of past Olympic champions in running, speed skating, rowing and swimming show little difference in 

physique over 80 years. Improvements in performance must therefore be due to better training and better 

efficiency, the latter including coaching, technique and equipment. Physical laws were applied to the four 

sports. For running and speed skating, if efficiency is constant, the power-to-weight ratio, P/m, improves 

velocity. For equally trained men and women, the velocity ratio should equal their relative lean-to-weight. 

Tested Olympian females were 92% as lean as their male counterparts while Olympic champion women ran 

91% as fast as men for 1980-1988. In speed skating, women were 92% as lean, while their Olympic 

champions skated 92% as fast as men for 1980-1988. If efficiency is constant for rowing, P / m
2/3

 improves the 

cube of velocity as does P m
1/3

 for swimming. For rowing and swimming, assuming equal training and 

efficiency, the theoretical velocity ratio was calculated using values from tested Olympians as to relative lean-

to-weight, relative body mass and relative drag coefficient. For rowing, relative cranking power was also 

needed.  For both sports, the estimated velocity ratio was approximately the 4/9
th

 power of the body mass ratio. 

The estimated swimming velocity ratio of 91% was exactly the velocity ratio of Olympic champions, 1980-

1988.  The estimated rowing velocity ratio of 90% was exactly the velocity ratio for Olympic champions, 

1992-2012. Female champions have improved from being 83% as fast as men 100 years ago in swimming to 

being 89% as fast in running, 90% as fast in rowing and swimming and 92% as fast in speed skating. In 

Olympia 2500 years ago, women ran a 500 ft course while men ran 600 ft, making women about 5/6 or 83% as 

fast. Relative velocity has been remarkably constant over recorded history. 
 

 

Keywords: Olympics, running, speed skating, rowing, swimming, power, gender differences, 

velocity, power to weight, Olympic champions 
 

 

 

1. INTRODUCTION 

Men and women have competed in athletics (track 

and field) for at least 2,500 years. The ancient 

Olympics (actually one of the four Pan-Hellenic 

Games) began at Olympia in 776 BC. That 

competition was dedicated to the male god Zeus, 

which meant that only men could compete, under the 

prevailing religious practices of that day. Unmarried 

women could and did attend. A few centuries later, a 

second set of Games were created at Olympia for 

those unmarried women, called the Heraia Games, 

dedicated to Zeus’ mythological wife, Hera. A group 

of 16 women was permanently empowered to run 

the ancient Greek sports program for women. 

Women competed on different days from the men. 

At the Olympic Games, the men ran one or more 

multiple of the stadia, a stadium length of 600 

Greek feet. Our word “stadium” comes from that 

measure. At the women’s Heraia Games, the stadia 

was shortened to 500 Greek feet. If women were 

considered to cover 500 feet in the approximate the 

same time that men would cover 600 feet, then the 

relative velocity of women was 500/600 of 83%, 

some 2,500 years ago.  

In 1896, women did not compete in the first modern 

Games, due this time to the reticence of the Games 

founder, Baron de Coubertin. It only took four years 
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for women to start competing in a variety of 

Olympic sports in 1900. Swimming began for 

women in 1912, athletics in 1928, speed skating in 

1960, 1000 m rowing in 1976 and 2000 m rowing in 

1988. This paper will explore gender differential 

behaviour in those sports using starting dates of 

1912, 1928, 1960 and 1988 respectively. 

Early work at understanding winning performances 

in general and gender differences in particular was 

presented in Stefani (2000). The laws of 

hydrodynamics were used to derive relationships for 

the power output in rowing, based on elapsed time.  

Stefani (2002) presented a preliminary derivation of 

the power output in running, jumping and 

swimming, along with estimated female/male 

percent differences in power as developed by 

Olympic champions.  

Stefani (2006) covered a much more sophisticated 

derivation of power output in running, jumping and 

speed skating (ground effects events) and in rowing 

and swimming (hydrodynamic events). The ratio of 

(women’s power) / (men’s power) was found 

employing two methods and the two sets of results 

were compared. The power ratio based on 

performances agreed with a power ratio based on 

physiology, specifically on relative (lean body mass 

/ total body mass), using Olympic data from 1976-

2004. It was shown that the power ratio was not as 

favourable for women in earlier years than the recent 

ratios consistent with physiology, suggesting 

unfavourable differences in training and efficiency 

in the past. Stefani (2007) extended those results by 

listing the skills required for each event, suggesting 

which of those improved, and estimating how past 

champions could have remained competitive in more 

recent years they had been privy to better efficiency.  

A recent paper, Stefani (2014), took a more practical 

approach for athletes and coaches, using 

power/weight analysis which included training and 

efficiency as variables. While an athlete is in 

training, improvements in ergometer power/weight 

can be easily measured and then used to directly 

estimate improvements in performance, without 

resorting to a time trial. In addition, upper body 

strength was included (measured by cranking power) 

which relates to success in throwing and rowing. 

That paper covered running, jumping, throwing, 

swimming and rowing.  

Stefani (2012) attacks the issue of whether high-tech 

swim suits may have been a cause of faster 

swimming; the conclusion is that the swimmer not 

the suit is responsible for faster times. 

This current paper will use a performance measure 

that is both intuitive and informative: the velocity 

ratio of women/men for Olympic champions. The 

laws of physics are used in Section 2 to derive the 

velocity ratio for the ground reaction events of 

running and speed skating, due to training, 

efficiency and physiology. A similar approach is 

taken in Section 3 for two hydrodynamic events 

(rowing and swimming). Increases (decreases) in 

that velocity ratio occur when women improve faster 

(slower) than men. Section 4 includes salient 

conclusions. 

2. RUNNING AND SPEED SKATING 

A more complete explanation of the following 

physical laws and kinesiology analysis, along with a 

supporting bibliography, may be found in Stefani 

(2007, 2014). A bibliography of the references cited 

in Tables 2-5 may also be found in Stefani (2007, 

2014), except for a few additional works cited at the 

end of this paper.  

The power generated by a running or speed skating 

athlete can be measured on a treadmill or cycling 

ergometer. Studies show that ergometer power, P, 

depends on the athlete’s lean body mass, LBM, and 

training (Tr) as given in (1). 

P = LBM Tr                             (1) 

That is, P/LBM is a constant for equally trained 

athletes of both genders. Enhanced training can 

improve that ratio for both genders.  

A fraction of that generated power, P e, is applied in 

running and speed skating to the centre of gravity of 

an athlete with body mass m, where e is the 

efficiency less than or equal to one. Efficiency 

depends on some combination of coaching, 

technique and equipment. That applied power is 

“absorbed” by that body mass, resulting in a 

velocity, v in (2), using Newtonian mechanics. The 

angles in (2) measure the direction of the forward 

movement of the centre of gravity. These angles 

differ for running and speed skating,  

P e = m v f(angles) constants                 (2) 

Side-by-side photos show little physical difference 

between Olympic champions of the past and present. 

The increases in velocity must then have followed 

from some combination of better training, coaching, 

technique and equipment. If %I/O denotes the 

percent improvement per four-year Olympiad, the 

introduction of the rowing ergometer (a training aid) 
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in 1980 increased average %I/O by 508%. 

Equipment such as the fibreglass pole in 1984 added 

a one-time 419% to %I/O in the pole vault as did the 

clap skate in 1998, adding 58% to speed skating 

%I/O. The Fosbury Flop, a high jumping technique, 

added an average of 83% when introduced for men 

in 1968 and for women in 1972. 

If both sides of (2) are divided by m, then P/m, the 

power-to-weight ratio, depends directly on v for 

fixed e. That is, each 1% increase in P/m while 

training implies a 1% increase in velocity if 

efficiency is maintained. 

The goal here is to analyse the velocity ratio of 

women/men, which follows from (1,2), where LTW 

denotes lean-to-weight given by LBM/m and it is 

assumed that angles are the same for both genders. 

Of course constants cancel. 

vW/vM = (LTWW/LTWM) (TrW/TrM) (eW/eM)   (3) 

When men and women are equally trained and 

efficient, (3) depends only on relative lean-to-weight 

LTWW/LTWM. When the velocity ratio is smaller 

than given by LTWW/LTWM, then training and/or 

efficiency for women would not be as good as for 

men. Table 1 contains the average velocity ratio for 

Olympic champions in running and speed skating. 

Five periods of Olympic history are used. The first 

period spans WW1 ending with the second post-war 

Games when competition had recovered. The second 

period is similar for WW2. The third period covers 

the Cold War while the fourth period covers the two 

boycotted Games followed by recovery in 1988. The 

fifth period covers the post-1988 anti-doping era. As 

mentioned earlier, this paper explores gender 

differential behaviour beginning with 1912 for 

swimming, 1928 for running, 1960 for speed skating 

and1988 for 2000m rowing. 

Table 2 contains studies from which relative LTW 

(relative leanness) can be calculated for running and 

speed skating. For speed skating, women were 92% 

as lean as men for period four and female champions 

skated 92% as fast, constant with equal training and 

efficiency. Women gained from period three to 

period four (89-92%) and then stayed 92% as fast in 

the current period. 

In running (rounded to two digits) women were 92% 

as lean in period four while female champions ran 

91% as fast. Similarly for period five, women were 

91% as lean but champions ran 89% as fast. The 

actual difference was 1.5% each time. Assuming 

equal training, women were 1.5% less efficient than 

men. Why? Female runners are six times as likely to 

have an ACL tear as men because their pelvis and 

hips are wider than for men, relative to height, 

causing relative overstriding and some knee rotation, 

Williams and Cavanagh (1987), Gilland (2009), 

Hewitt (2010). The data in Table 1 provides a 

scaling for that overstriding. Because a female 

runner has her leg a bit straighter than a man at 

stride’s end, women apparently put 1.5% of the 

force, intended to move the athlete forward, into the 

knee and ankle joints, causing the female champion 

to run 1.5% slower than suggested by relative LTW. 

The take-away message is that female athletes 

should strengthen knees and ankles to protect against 

potential injury.  

Women apparently gained in training and efficiency 

from period two to four (88% to 89% to 91%). 

Having achieved equality, periods four and five 

imply a velocity ratio driven by physiology (LTW 

and overstriding).  Why did women lose 2% in 

period five, returning to a velocity ratio of 89% as in 

period three? Period four may be the statistical 

equivalent to the chemical anti-doping passport, 

wherein a change in blood chemistry suggests 

doping. We know that steroids were rampant in 

period four. Anti-doping efforts have ramped up in 

period five.  It may be that women gained more 

LTW than did men in period four, as women were 

less lean to begin with and would benefit more with 

steroid use. The former East Germany was a 

consistent gold medal winner in women’s running 

events from 1980-1988. Former East German 

authorities have admitted doping before unification.  

3. ROWING AND SWIMMING 

The law of hydrodynamics is to rowers and 

swimmers what Newtonian mechanics is to runners 

and speed skaters. The kinesiology of a rowing 

ergometer differs from that of a cycling or treadmill 

ergometer. That is, P/LBM is not equal for equally 

trained women and men. An additional cranking 

effect, Cr, is present. Women are at a disadvantage 

due to relatively less upper body and shoulder 

volume. The power registered on a rowing 

ergometer is given by (4).  

P = LBM Tr Cr                        (4) 

As in (2), a fraction of that power is applied to a 

racing shell causing it to move forward with velocity 

v. 



 

Period Years Running Speed Skating Rowing Swimming 

 Period  LTW  

Ratio  

N=156  

Velocity 

Ratio  

N=95  

LTW 

Ratio  

N=51  

Velocity 

Ratio 

N=46  

Estimate 

N=1789  

Velocity 

N=49  

Estimate 

N=1815 

Velocity 

N=192  

WW1-Recovery 1912-24 

    

 
  83  

WW2 - Recovery 1928-52  

 

88  

  

   87  

Cold War 1956-76  

 

89  

 

89     90  

Boycott-Recovery 1980-88 92  91  92  92   90  91  91  

Post 1988 1992-14 
91 89  

 
92  90  90  90  90  

Table 1 Velocity ratios of female/male Olympic champions and estimated ratios based only physiology 

 

Source Event Men Women LTWW/LTWM (sd) 

  N %Fat (sd) N % Fat (sd)  

Fleck (1983) 

US Olympians 

Running  24 6.4(1.2) 21 13.7 (3.6) 92.1 (2.5) 

Vucetic et al. (2008) 

Elite Athletes 

Running 41 5.8 (2.4)    

Molina (2007) 

US College Athletes 

Running   70 14.2 (1.3) 91.0 (1.8) 

Fleck (1983) 

US Olympians 

Speed Skating 31 11.4 (3.2) 20 18.1 (5.0) 92.4 (4.5) 

Yoshiga and 

Higuchi (2003) Elite 

Athletes 

Rowing 120 11.9 (6.2) 71 20.9 (5.2) 89.8 (5.7) 

Fleck (1983) 

US Olympians 

Swimming 39 12.4 (3.7) 41 19.5 (2.8) 91.9 (3.5) 

Van Erp-Baart et al. 

(1989) Elite 

Athletes 

Swimming 20 10.7 (3.3) 50 21.4 (5.6) 88.0 (4.4) 

                     Table 2 Relative Lean-to-Weight Ratio  LTW (LTW = LBM/m = 100  - %Fat) 

 

Source Men Women CdM/CdW 

 N Cd(sd) N Cd(sd)  

Toussaint (1988) 32 .54(.09) 9 .47 (.07) 1.170 

Zampora (2009) 84 .353 66 .318 1.110 

Mean     1.123 

                                                    Table 3 Drag Coefficient Ratio for men/women 

 

Study Men Women CrW/CrM 

 N m LBM Time  N m LBM Time  

Equal m 57 63  436 37 62  477 0.850 

Equal LBM 20  52 446 10  51 466 0.930 

 77    47    0.890 
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Table 4 Cranking Ratio Cr for elite rowers (Yoshiga and  Higuchi, 2003) 

  Men Women  

Source Event N m (sd) N m (sd) mW / mM 

Mc Ardle (1981) 

1964 & 1968 

Olympians 

Running and 

Jumping 

354 71.8 181 57.5 1.249 

Mc Ardle (1981) 

1964 & 1968 

Olympians 

Swimming 516 73.1 300 58.3  1.254 

Pyne (2000) 

1988 & 1994 

Australian Olympians 

Swmming   43 81.8 (7.0)   42 64.8(6.1) 1.262 (.115) 

US Olympians 2000 Rowing   19 92.5 (8.1)   19 73.3(6.7) 1.261 (.114) 

  932  542  1.256 (.11) 

                                                     Table 5 Body mass ratio for women/men 

The area in contact with the water, approximately 

the 2/3 power of body mass due to buoyancy, 

induces drag. The equation of motion is given by 

(5), where Cd is the drag coefficient.  

P e = v
3
 m

2/3
 Cd constants                 (5)  

If both sides of (5) are divided by m
2/3

, then P/m
2/3

 

becomes the rower’s power-to-weight parameter, 

equal to v
3
 if efficiency e remains constant. Rowers 

can be ranked for placement on a racing shell, based 

on rowing ergometer P/m
2/3 

as described in Stefani 

(2000, 2014). Every 1% improvement in that 

parameter implies a 1/3% increase in velocity, for 

constant e. The velocity ratio (6) follows from (4,5), 

where constants cancel. 

                     vW/vM = [(TrW/TrM)(eW/eM)]
 1/3

 
 
[(LTWW/LTWM)(CrW/CrM)]

1/3 
(mW

 
/
 
mM )

1/9     
(6) 

If women are as equally trained and efficient as men, 

in rowing, then the velocity ratio would be given by 

the second line of (6). Table 2 (LTW), Table 4(Cr) 

and Table 5 (body mass) provide the values needed. 

The values of CrW/CrM in Table 4 are found by 

solving (6) using the tabular data. For period five, 

(LTWW/LTWM)(CrW/CrM) is given by .898 x .890 or 

.799. That is essentially the same as mW
 
/
 
mM which 

is 1/1.256 or .796. For equal training and efficiency, 

the estimated velocity ratio of (6) is the same as    

(mW
 
/
 
mM)

4/9
, or 90%,  agreeing to two digit accuracy 

with the observed velocity ratio of 90% for rowing 

in period five. 
 
Women appear to have competed 

with equal training and efficiency as men over both 

periods, since the velocity ratio is accurately 

estimated by physiology only. 

For swimming, a treadmill or cycling ergometer can 

be used to measure power, as given by (1). The 

fraction of power applied is more complicated than 

just P e for swimming. A swimmer applying force 

while immersed in water does so with a propelling 

efficiency much like that of the propeller on a boat, 

Stefani (2014), depending on the size of the 

swimmer.  Thus a swimmer’s efficiency becomes e 

= m eS where eS depends on coaching, technique and 

equipment/conditions.  The applied power equation 

is given by (7). 

P m eS = v
3
 m

2/3
 Cd constants           (7) 

If the body mass terms are collected on the left side 

of (7), then a swimmer’s power-to weight 

relationship is P m
1/3

. Every 1% improvement in that 

parameter implies a 1/3% increase in velocity, for 

constant eS. 

The velocity ratio follows from (1,7).  

vW/vM = [(TrW/TrM)(eW/eM)]
1/3

 
 
[(LTWW/LTWM)(CdM/CdW)]

1/3
(mW

 
/
 
mM )

4/9        
(8) 

If women are as equally trained and efficient as men 

in swimming, then the velocity ratio would be given 

by the second line of (8). Table 2 (LTW), Table 

3(Cd) and Table 5 (body mass) provide the values 

needed. For period four, (LTWW/LTWM)(CdM/CdW) 

is .919 x 1.123 or 1.011. For period five, that term is 

.880 x 1.123 or .996. Both values are close to one. 

The surprising conclusion is that for equal training 

and efficiency, the velocity ratio in swimming is 

closely approximated by (mW/mM)
4/9

, the same 

approximation as for rowing.  

Completing the estimated velocities, we obtain 91% 

for period four and 90% for period five, both of 

which agree with the actual average velocity ratios 

in Table 1 for swimming.  
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It appears that women acquired better training and 

efficiency from periods one to three, as their speed 

relative to men increased from 83% to 90%. The 

relative velocity was nearly the same for the last 

three periods, agreeing with physiological estimates, 

indicating equality of training and efficiency. 

 

4. CONCLUSIONS 

Side-by-side photographs of Olympic champions 

taken about 80 years apart show little change in 

physiology. The large increases in velocity in 

running, speed skating, rowing and swimming are 

therefore due to improved training and efficiency 

(coaching, techniques and equipment). The laws of 

physics were used to derive the velocity ratio of 

women/men, in terms of training, efficiency, and 

physiological variables.  

Satisfying the assumption of equal training and 

efficiency, today’s Olympic champions display a 

velocity ratio for women/men closely approximated 

by physiology alone. In the hydrodynamic events of 

rowing and swimming, female elite athletes have 

90% the value of men for the 4/9
th

 power of their 

body mass ratio and female Olympic champions are 

90% as fast. Female speed skaters are 92% as lean 

as men and their Olympic champions are 92% as 

fast. Female runners are 91% as lean but run 89% as 

fast, losing 1.5% by overstriding, induced by a 

relatively wider pelvis. If we exclude the velocity 

ratios for 1980-1988 in running and swimming, a 

monotonic trend is evident as female athletes gained 

in training and efficiency, increasing the velocity 

ratio until differences were due only to physiology. 

Female swimming champions gained from being 

83% as fast in 1912-24 to being 90% as fast in 1956-

1976, the same as today (1992-2014). Female 

rowers have been 90% as fast since 1980-1988. 

Female speed skaters increased from 89% as fast to 

92% as fast in 1980-1988, the same as today. 

Female runners increased from 88% as fast for 

1928-1952 to 89% as fast for 1956-1976, the same 

as today. There was a bump up in 1980-1988 and 

then down today for the velocity ratio for female 

champions in running and swimming, the same time 

period when East Germany dominated women’s 

running and swimming. Former East German 

athletes and officials have admitted doping which 

gave female champions a boost in relative lean body 

mass, explaining the boost in velocity. 

Athletes in training can use a power-to-weight 

measure to assess progress. For running and speed 

skating, each 1% by which P/m is increased, 

velocity increases by 1%, for equal efficiency. For 

each 1% that P/m
2/3 

(rowing) and P m
1/3

 (swimming) 

increases, velocity increases by 1/3% for equal 

efficiency. Female runners should strengthen knees 

and ankles to reduce possible injury. 

Over the centuries, it has taken a great deal of effort 

by female athletes and by fair-minded people of both 

genders to provide a level playing field for today’s 

female athletes. It is everyone’s job to keep it that 

way.  
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Abstract 

This paper focuses on penalty counts in the ANZ Championship and how they vary according to the teams 

involved, location and the umpires officiating the matches. The matches were split into four categories for 

analysis. Of most interest was category 4 – New Zealand side versus an Australian side played in New Zealand 

(and therefore with umpires from New Zealand). This group produced results that were pointedly different to 

that of each of the other categories, with the away team conceding on average approximately 12 more penalties 

than the home side. Category 4 proved to be significantly different to from each of the other three categories, 

whilst none of the other categories were different from each other. This difference was comprised of 

approximately 8 contacts and 4 obstructions on average per match. The reasons for this discrepancy are not 

entirely clear, however it can be linked to crowd factors, umpiring bias, umpiring style differences and team 

play style differences. It is anticipated this paper may help players, coaches and umpires better understand why 

this discrepancy might exist and how to go about reducing its effect in the future.  

 

Keywords: Penalties, Umpire bias, ANOVA, Netball 
 

 

1.INTRODUCTION 

Netball is an invasion sport played between two 

teams, with seven players on court at all times (and 

up to five players on the bench). The ultimate goal 

of the game is to score more goals than the 

opposition by placing to ball into your goal which 

is a hoop placed at the top of a pole at each end of 

the court. The ANZ Championship is widely 

considered to be the highest level of competitive 

netball in the world, aside from international tests. 

The competition is composed of five teams from 

Australia and five teams from New Zealand, who 

compete in 13 matches each throughout a season 

and then a finals series to decide the eventual 

winner. As is the case with every sport, when the 

rules of the game are infringed upon, the officiating 

umpires must award free passes against the 

infringing team. Penalties are the most common 

occurrence of this in netball, and these actions can 

be attributed to contact calls and obstruction calls. 

Contacts can be thought of as any infringement that 

involves illegal physical contact between players 

such as attempting to strip an opposition player of 

possession. Obstructions can be thought of as any 

infringement that does not involve physical contact, 

such as defending a player too closely (must be 

0.9m or more away from a player whilst defending 

an opposition player).  

The structure of the ANZ Championship means 

that Australian umpires officiate matches in 

Australia and New Zealand umpires officiate 

matches in New Zealand. There is a common 

perception that umpiring interpretations are 

different or at least that penalty counts are disparate 

across the two countries. Possible reasons for why 

this may include referee bias, crowd influence or 

differences in play style across countries. There has 

been a large amount of research in the past 

surrounding crowd influence and the effect it can 

have on umpiring decisions in other sports around 

the world. Watching a match without sound; 

therefore without the crowd noises and the 

atmosphere which that creates, has been shown to 

significantly reduce the number of fouls awarded to 

the home side in association football (Nevill et al, 

2002). The removal of sound also resulted in 

umpires being less certain of their decisions. This 

can therefore be linked in closely with home team 

advantage, which is what clearly creates this 

atmosphere as the home team will almost always 

have the larger crowd support. Crowd density is a 

large factor in football at least, as opposed to crowd 

size or proximity (Goumas, 2014). The people in 

the crowd most certainly believe that they can 

influence the result (Wolfson et al, 2005) so it is 

very possible that this may extent to influencing the 

umpiring decisions on the court. The difference in 

play style between the two countries is much more 

difficult to discuss or prove – however it is 

commonly accepted that New Zealand sides 

traditionally play a defensive zone where as the 

Australian sides play one on one defence. This may 
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or may not have an effect on the number of 

penalties that occur. 

 

 

2.METHODS 

Penalty data from the ANZ Championship seasons 

between 2009 and 2012 (inclusive) was collected 

from the ANZ Championship website (as supplied 

by Champion Data). This was split into 

obstructions and contacts for each team in each 

match and included locations and scores of 

matches. This was a total of 260 matches - 65 

matches from each season. Finals were not 

included as they are usually officiated by an umpire 

from each country. Four of the home and away 

matches were also excluded from analysis because 

they were known to either be incomplete or extend 

into extra time (where it was not possible to obtain 

a penalty count for the match prior to extra time 

commencing). The data was then tested to see if the 

penalty counts have changed dramatically over 

time prior to any analysis. Following this, the data 

was split into four categories.  

Table 1. Venue information and categories 

 

This allows for comparison across the four 

different types of matches that concern this study 

and will form the basis of all analyses.  

In some cases, thepenalty differential is used as the 

value of interest, this was defined to be the number 

of penalties conceded by the away team minus the 

number of penalties conceded by the home team. 

Likewise, this was later split to accommodate for 

contact and obstruction differentials.  

 

3. RESULTS 

An ANOVA was used to test whether the mean 

difference in penalties between away and home 

teams changed from 2009 to 2012. The resultant p-

value (0.895) clearly indicated no significant 

difference between the years, which meant it was 

possible to analyse the data as a whole. A look at 

home and away penalties over time helped to 

explore this.  

 
Figure 1. Mean home penalties per match for each year 

Figure 2. Mean away penalties per match for each year 

Even though the numbers of penalties have 

fluctuated from year to year, the home penalties 

and away penalties have fluctuated approximately 

evenly with each other, which explains why the 

ANOVA test on differentials showed no significant 

difference.  

A preliminary look at penalty counts resulted in 

Table 2. The first four rows show mean home team 

penalties for each category, and the second four 

rows show the mean away team penalties for each 

category. Generally speaking the penalty means are 

around the 60 or just under that mark for each side. 

Underlined is the mean away team penalties in 

category 4. This figure represents Australian team 

penalties when playing in New Zealand and it 

stands out as the discrepancy in these figures with a 

mean of 68.90. Also of note is that the 

corresponding home team penalties mean is 56.71, 

the lowest mean of all of the categories.  

 

 

 

 

 

 

Category Description 

1 Australia vs. Australia matches, 

played in Australia 

2 New Zealand vs. New Zealand 

matches, played in New Zealand 

3 Australia vs. New Zealand matches, 

played in Australia 

4 New Zealand vs. Australia matches, 

played in New Zealand 
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Table 2. Mean penalties per side in each category 

The analysis then changed toward looking at 

differentials in penalties rather than penalty counts 

alone. The differential was calculated by 

subtracting the home team penalties from the away 

team penalties. A visual look at this can be seen in 

Figure 3.  

 

Figure 3. Mean difference in penalty counts with error bars for 
each category 

Again it is category 4 that appears to be the 

discrepancy in this data, with a much higher mean 

penalty differential than the other 3 categories. In 

order to validate this difference, the means were 

compared for statistically significant differences. 

This included an ANOVA test (which was 

significant at alpha level of 0.05) and then post-hoc 

tests following that.  

 

 

 

 

Table 3. ANOVA test on penalty differential 

 

 

(I)  (J)  

Mean 

Difference 

(I-J) 

Std. 

Error 
Sig. 

Tukey 

HSD 

1 

 

2 2.463 2.661 0.791 

3 0.343 3.020 0.999 

4 -10.581 3.038 0.003 

2 

 

1 -2.463 2.661 0.791 

3 -2.121 3.012 0.895 

4 -13.044 3.031 <0.000 

3 

 

1 -0.343 3.020 0.999 

2 2.121 3.012 0.895 

4 -10.924 3.351 0.007 

4 1 10.581 3.038 0.003 

2 13.044 3.031 <0.000 

3 10.924 3.351 0.007 
Table 4. Post-hoc tests on penalty differential 

Table 3 indicatedthat at least one pair of match 

types differ significantly from each other. The post-

hoc Tukey tests (in Table 4) show that category 4 is 

significantly different to each of the other 

categories, whilst none of the other categories are 

significantly different. This further suggests that 

category 4 is the discrepancy in this data set.  

When the data was split into obstructions and 

contacts, it gave a slightly take on the 

discrepancies.  

 

Figure 4. Mean difference in contact counts with error 

bars for each category 

 Category N Mean 
Std. 

Deviation 

Home 

Team 

Penalties 

(Home 

Team 

named 

first, 

then 

location 

of game) 

1 Aus/Aus 78 59.13 11.940 

2 NZ/NZ 79 59.75 11.820 

3 Aus/Aus 50 58.00 13.513 

4 NZ/NZ 49 56.71 13.880 

Total  256 58.64 12.585 

Away 

Team 

Penalties 

(Away 

Team 

named 

first, 

then 

location 

of game) 

1 Aus/Aus 78 60.73 12.184 

2 NZ/NZ 79 58.89 13.186 

3 NZ/Aus 50 59.26 9.583 

4 Aus/NZ 49 68.90 11.500 

Total  256 60.33 12.424 

ANOVA 

Difference in Penalties (away minus home) 

 SS DF MS F Sig. 

Between Groups 5603.73 3 1867.91 6.72 <0.00 

Within Groups 70017.12 252 277.85   

Total 75620.84 255    
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Figure 5. Mean difference in obstruction counts with 

error bars for each category 

These results indicate that more of the overall 

difference in penalties can be attributed to contacts 

– approximately twice as much of a difference 

comes from contacts compared to obstructions.  

By comparing the number of obstructions and 

contacts Australian teams are penalised with in 

Australia (against sides from New Zealand) versus 

the same opposition in New Zealand some more 

information comes to light.  

 

 
Figure 6. Mean contact counts with error bars for 

Australian sides against NZ sides 

 

 

 
Figure 7. Mean obstruction counts with error bars for 

Australian sides against NZ 

Even though the difference in contact numbers is 

larger than that of obstructions, the difference in 

obstruction may be more significant given that 

there are much less obstruction calls in a match. 

Australia a penalised with approximately 10% 

more contacts when playing in New Zealand, as 

shown in Figure 6. However they concede 

approximately 50% more obstructions under the 

same constraints (Figure 7).  

4. DISCUSSION 

Clearly throughout the analyses it was category 4 

that was consistently the discrepancy in the data 

set. This indicated matches played in New Zealand 

between one side from New Zealand and one side 

from Australia. Although the number of home team 

penalties remained relatively consistent for each 

category, the away team penalty mean for category 

4 was more than 8 penalties higher than any of the 

other three categories. This is curious particularly 

because category 3 does not share this property 

despite it also being an Australia versus New 

Zealand match up. An average differential of 12 

penalties (Figure 3)against the away side is a very 

large number given an average count is around the 

59 mark for any given match.  

As expected, the ANOVA and post-hoc tests 

identified that category 4 was the noticeable 

discrepancy in the data set, and that it was in fact 

different to each of the other three categories 

significantly. In addition, none of the other 

categories proved to be statistically different from 

one another. Given that it has been proven than 

home teams can be inadvertently advantaged by a 

referee due to the home crowd, we could 

reasonably expect to see this evident in each 

category. However it is categories 1 and 3 that best 

display this behaviour at a weak level. Interestingly 

category 2 has a mean differential of penalties in 

the negatives – that is to say that home teams are 

on average receiving more penalties than the away 
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teams. This only makes the result from category 4 

more glaring.  

By looking at contacts and obstructions separately, 

we may be able to better understand how and/or it 

is that category 4 is so unusual. Both contacts and 

obstructions contribute to the overall differential in 

category 4; approximately 8 penalties come from 

contacts and 8 from obstructions. Again the other 

three categories are approximately equal for bother 

contacts and penalties and appear to differ at least 

somewhat from category 4 (especially in the case 

of contacts).However this difference could 

potentially be somewhat misleading. It may be 

more telling to look at these numbers in the context 

of how many contacts and obstruction calls there 

actually are throughout a match (Figures 6 and 7). 

There are considerably more contacts in a match 

than there are obstructions generally speaking. This 

means that the increase in contact counts is less of a 

leap so to speak. However given the relatively 

small number of obstructions paid in matches, what 

may seem like a small increase in face value is 

actually almost a 50% increase in obstructions that 

Australian sides concede in New Zealand against 

the same opposition. Meanwhile the contacts 

number increases by approximately 10%. It is 

possible to look at these changes from both 

perspectives, but whichever way it is observed, 

category 4 is always the odd one out.  

When trying to put a finger on why this is the case, 

it possible to go down several routes. The most 

obvious explanation is perhaps the most 

controversial, in that umpires from New Zealand 

are being biased against Australian sides (or for 

sides from New Zealand, depending on your 

perspective). This is a common complaint from 

some members of the netballing community in 

Australia. This could potentially be in part 

attributed to crowd factors, however that would not 

adequately explain why this issue is only prevalent 

for that particular category of match. Even arguing 

that crowds in New Zealand are more ‘hostile’ 

towards away teams could not explain this 

discrepancy since away sides from New Zealand do 

not experience this differential at all – in fact 

slightly the opposite.  

It’s also difficult to attribute this result entirely to a 

difference in playing style from country to country. 

Category 3 shows no sign of the extraordinary 

results that category 4 contain – and both of these 

scenarios have Australian sides playing against 

sides from New Zealand.  

Another popular view is that the umpiring styles 

from country to country differ; but again this fails 

to fully explain why categories 3 and 4 are 

different. This has also been a popular belief held 

in the netballing community. One possible way of 

explaining this might be a combination of the 

above views. Potentially the Australian game style 

coupled with the New Zealand umpiring style 

produces a higher number of penalties. Conversely, 

the New Zealand game style may not overly 

infringe on the Australian umpiring style and 

therefore not draw the extra ire of the umpires. 

Were this to be the case, the onus would then be on 

the Australian sides to adjust better to the different 

umpiring style when playing matches in New 

Zealand.  

It is likely that the discrepancy can be somewhat 

attributed to a combination of many of these 

factors, but it is unclear at this stage as to how 

much each factor plays a part.  

5. CONCLUSION 

We have shown through looking at matches over 

the course of four years in ANZ Championship 

netball that there is some inconsistency in penalty 

counts – specifically involving New Zealand sides 

and Australian sides facing off in New Zealand. 

For matches played in New Zealand, Australian 

sides average approximately 12 more penalties than 

their opposition. This difference is made up of 

approximately 8 contacts and 4 obstructions per 

match. In contrast, the other categories of matches 

have an average differential of no more than 3 

penalties. Possible explanations for this 

discrepancy include different umpiring techniques 

between countries, different playing styles between 

countries crowd factors and umpiring bias. Further 

research could attempt to better understand the 

reasons for this discrepancy and work towards to 

resolving it. Further investigation into whether the 

quality of the sides involved has any bearing on 

these results could also make the problem clearer.  
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Abstract 

 
In this paper, we present a final ten system for the AFL that utilises a world cup style system. We manage to 

keep the finals system in a four week window, meeting existing constraints. We evaluate the system via 

simulation and determine the system’s likelihoods, fairness, timely completion and balance. 
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1. INTRODUCTION 

The aim of this paper is to create a practical and 

commercially attractive AFL Final 10 system, for 

potential use in an 18 to 20 team AFL. 

Currently, the AFL consists of 18 teams, with 8 

teams contesting the four week finals month 

concluding with the AFL Grand Final in late 

September. 

The growth of the AFL in recent decades, and some 

issues with previous finals systems, has meant that 

various finals systems have been used. 

 

As mentioned in our other paper in these 

proceedings, prior to 1972, the most common finals 

system was a four team, three weeks structure. There 

were twelve teams in the VFL from 1944 until 1986 

inclusive. 

From 1972 to 1990 inclusive a final five was used, 

expanding to a final six for three years to 1993. The 

Macintyre Final 8 was adopted in 1994 and used up 

to and including 1999. This matched 1
st
 and 8

th
 

against each other in Week 1, and 2
nd

 against 7
th

 etc. 

The two lowest ranked losers would be eliminated in 

the first week, meaning that individual matches’ 

results did not have predetermined consequences. 

Since the year 2000, a new final 8 system replaced 

the Macintyre Final 8. This is still in use in 2014. 

The current system will not be explained in this 

paper, however the probabilities of teams winning 

the premiership will be referred to, as calculated by 

Lowe and Clarke (2000).  

 

2. METHODOLOGY 

The Final 10 system devised in this paper increases 

the number of matches in the finals series to 11, 

from the current nine-match structure. An extra two 

matches are played in the second week. Recent 

history of AFL/VFL finals is shown below, in terms 

of number of finals teams, number of finals, and 

(line) the percentage of teams contesting the finals. 

As in Figure 1, teams are given home game and/or 

bye privileges based on season finishing positions. 

The system brings in a new element to AFL, four of 

the teams contest a mini-finals within the finals in 

the first two weeks. The four teams finishing from 

3
rd

 to 6
th 

play ‘within their group’ over the first half 

(ie two weeks) of the finals, with the top two 

rewarded with proceeding further. This is similar to 

a four team World Cup group structure, where each 

four team group plays round-robin, after which the 

top two proceed to the round of sixteen.  

Byes would be given to the fi teams at the end of the 

regular season. The top team is allocated as A1, and 

the team finishing second is denoted A2. These 

teams are in Group A. 

There are three main differences between the World 

Cup groups process, and the system proposed here: 

1. Due to the limitation of a four-week finals 

system, only four matches rather than six 

are possible for the group round-robin. That 

is, each team would play two of the other 

teams with Group B, rather than all three. 

2. In the World Cup, points are allocated 3/1/0 

for Win/Draw/Lose respectively, while in 
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the proposed AFL Group B, points would 

be 4/2/0 in keeping with the main season.  

3. In the World Cup, teams tied on points are 

separated on Goal Difference. In the AFL 

system, the percentage system could also 

be carried through from the main season. 

Only the scores from the finals would be 

used to calculate the Group B percentages. 

Weeks 3 and 4 would remain as two Preliminary 

Finals (in effect these are semi-finals) followed by 

the Grand Final.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Devised Final 10 system 

The AFL currently gives the higher ranked team the 

benefit of a ‘home’ final in all finals matches except 

for the Grand Final, which is played at the MCG. 

The new system would continue this pattern. 

Analysis of the 2013 season reveals a 57.8% win 

rate for the home team where they have a home-

away advantage. This was determined by allocating 

matches as either home - away (advantage to one 

team) or neutral (equal chance to both teams) by 

making the following assumptions: 

1. A home advantage is gained only when the 

home team plays in their home city/state 

and doesn’t need to take a flight and the 

opposing side is required to fly interstate. 

2. All matches not fitting the rules in 1 above 

are deemed neutral. 

3. The Grand Final is played at the MCG: this 

will be modeled as a neutral match for two 

Victorian based clubs, or two interstate 

clubs contesting the flag. Of course if one 

team is a Melbourne team, and the other an 

‘interstate’ team then this is a home-away 

match with the appropriate home v away 

probabilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So for the purposes of modeling fairness of the 

Finals 10 system, the following grounds are pooled 

together as being effectively located together, with 

home teams as shown in Figure 2. The remaining 

boutique grounds used in 2013 were deemed to be 

neutral, as both teams needed to travel from their 

home states, and the stadiums were used 

infrequently. For the finals system the boutique 

grounds aren’t used and so don’t come into play. A 

simple comparison is shown: 

 Week1 Week2 Week3 Week4 

Current 8 4 2 2 1 

Proposed 4 4 2 1 

Table 1: Comparison of games played 
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Figure 2: Pooled Grounds 

 

Group B consists of the next four teams as ranked at 

the end of the regular season. They play amongst 

themselves in the first two weeks, with the top two 

going through to the third week. This would be a 

new feature of VFL/AFL finals, a mini-finals within 

the finals much like a World Cup group where two 

teams out of four succeed in going through to the 

‘elimination phase’.  

Here, however, each team would play two rather 

than three of the other teams. These four are 

awarded ‘home’ and ‘away’ fixtures in weeks one 

and two according to their season ending positions – 

3
rd

 is given two home matches which are against 5
th

 

and then 6
th

. The team finishing 6
th

 has no home 

matches in this phase, and the 4
th

 and 5
th

 teams are 

allocated one home and one away in the two week 

round-robin as shown above. 

Other combinations of fixtures in this phase would 

have been possible. In the structure selected, the 

match-ups of 3
rd

 v 4
th

 and 5
th

 v 6
th

 are avoided. 

After the end of Finals Week 2, the top two ranked 

teams from the group are decided, and allocated as 

B1 (top) and B2 (second). How are the two Group B 

winners decided and ranked?  Firstly on wins/points 

whereby 4 points are given for each win. Of course 

any team achieving 8 points/ 2 wins will always 

proceed to Week 3, while any teams not winning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

either game cannot proceed. Percentage from within 

the finals after the four matches is the next separator. 

If teams are still equal, then end of season points 

(and then percentage) would be used. It would be 

very unlikely for regular season data to be required. 

3.RESULTS 

The simulation procedure was as follows: 

Stage 1. 

Teams were allocated a number and a team code 

which includes two digit number for home game 

location. For example G10 is for Melbourne/Vic 

based clubs, and G25 for Gold Coast. The first block 

of inputs (uniform dist) provides a random end of 

season ladder, which of course includes random 

final 10 teams to participate in the 10 team finals.  
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Stage 2: Finals Week 1 

Week 1 of the finals (four matches) are played out 

with the competing teams allocated either 50%-50% 

or 57.8%-42.2% depending on whether the matches 

are neutral or home-away (advantage) using the 

rules discussed previously. 

In Figure 3, Western Bulldogs and GWS win their 

Group B games. In the elimination finals Richmond 

and Geelong both survive, while Melbourne and 

Carlton are eliminated. 

 

Figure 3: Stage 2 

Stage 3: Finals Week 2 

The second week includes another four matches – 

the deciding third and fourth Group B games, and 

two qualifying finals which bring together the top 

two teams (fresh from a bye in Week 1) and the 

surviving Group C teams. 

After appropriate teams are allocated into these 

finals, the simulation structure is the same as for the 

first week. 

The two losing teams from the qualifying matches 

are eliminated. In this example, as shown below, 

Richmond and Geelong will be out, while Gold 

Coast and Sydney will proceed further. 

 

 

Figure 4:Stage 3 

In matches 3 and 4 of Group B, Adelaide and 

Western Bulldogs won. Therefore after all four 

Group B matches, the points ladder for Group B is: 
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There are no more matches for these teams in the 

Group B two week ‘mini-series’, so two must 

proceed and two will be eliminated. Here, Western 

Bulldogs (WBD) has 8 points after winning both of 

its matches. It will proceed into the preliminary 

finals week. West Coast (WCE) lost both its 

matches so will not proceed. 

Adelaide and GWS both won one of their matches 

and are equal on four points. In reality their ‘in 

finals’ percentages would decide which proceeds to 

Week 3. In the simulation, actual scores were not 

generated, although this could be added relatively 

easily. Instead, four more inputs are used to decide 

percentage ranking for the Group B teams. From the 

two teams in dispute, the one with the higher 

percentage rank proceed, and the other is eliminated: 

 

 

 

 

 

 

 

Figure 4: Progression from Group B 

 

 

 

 

 

 

 

 

 

Figure 5: Stage 4 

All other matches in the finals except for the Grand 

Final would need to be decided on the match day, so 

the contingency of extra time would be retained 

from the current AFL finals system. Currently the 

AFL’s policy for the Grand Final is the drawn 

matches will be completely replayed on the 

following weekend – a crowd and revenue bonanza. 

Stage 4: Finals week 3, Preliminary Finals 

The benefit (where team pairings aren’t neutral) of 

home finals in the preliminary finals goes to the 

teams from the higher group. The top two teams A1 

and A2 then will always play home PFs when they 

make it to Week 3, while Group B teams will get 

home finals only where they are competing against 

Group C teams. 

In this example, it is assumed that Gold Coast versus 

Western Bulldogs is played at Carrara. As the 

capacity is only 25,000 there, perhaps the match 

would be played in Brisbane’s Gabba (approx. 

42,000 capacity) instead however, or even the MCG.  
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However all ‘Home’ teams are assumed to be given 

the benefit of home city finals up to Week 3, which 

is relatively commercially practical for all teams 

except GCS. For GWS playing a home final at ANZ 

Stadium or the SCG, this would be treated as a home 

– away game except against Sydney. 

As shown in Figure 5, Gold Coast and Sydney both 

won their matches and are rewarded by proceeding 

to the Grand Final. 

 

 

Stage 5: Grand Final 

 

 

 

Figure 6: Stage 5 

 

In this example, the match between GCS and SYD is 

designated as neutral, both teams playing away at 

the MCG. As shown on the right, the winning team 

Sydney’s starting position in the finals was 2
nd

. 

 

3. DISCUSSION 

Fairness is the main criterion that needs to be tested. 

The finals system structure should reward teams for 

finishing higher on the ladder by the structure of the 

match pairings and the rules to decide matches 

locations and therefore the possibility of home team 

advantage. At the same time, to keep interest in the 

series, the higher finishing teams should not be 

virtual certainties to make the Grand Final. In 

addition, the probabilities ideally wouldn’t change 

from one finishing position to the next in too large a 

step. 

Previous work by Lowe and Clarke (2000) showed 

that for the current AFL finals system the teams 

have the following probabilities of winning the 

premiership, assuming all games are 50-50 in the 

first table, and in the home-away advantage model 

in the second table. 

Current AFL 8-team finals system 

 

The top four teams in the current system are given 

considerably higher chance of winning the GF. 

 

 

 

 

 

 

 In the home ground advantage model, the gap 

between 4
th

 and 5
th

 chances of winning the 

premiership is 13.3 percentage points. 

The proposed Top 10 Finals system resulted in the 

following probabilities, applying models based on 

the models of Lowe and Clarke (2000). 

The equal probability model assumes 50%-50% 

chances in all matches for the competing teams; 

 

The Group B teams have a 50% chance of making it 

through the two-week ‘group stage’ as there is no 

home-away advantage and half of the four teams 

will proceed. 
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A simulation of 50,000 iterations was run to 

determine probabilities with the home-away 

advantage where one team travels while the other 

doesn’t. The procedure was detailed previously. 

Groupings of teams to factor in home-away 

advantage are different to Lowe and Clarke.  

 

The results for all teams combined were: 

 

 

Dividing the teams into three groups based on 

location: 

Type 1 teams (Victorian based): CAR, COL, ESS, 

GEE, HAW, MEL, NME, RIC, STK, WBD 

Type 2 teams (located in two-team cities): WCE, 

FRE, ADE, PAD, SYD, GWS 

Type 3 teams (single-team locations): GCS, BRI  

 

 

For type one and type two teams, the 10
th

 team has a 

slightly higher chance than 9
th

 of winning the 

premiership using the simulation results as shown 

above. More iterations would be required to confirm 

this however. 

 

4. CONCLUSIONS 

A relatively fair ten-team AFL finals system within 

four weeks has advantages over the current finals 

system. The main ones are the extra two matches in 

the second week, and the much better deal for the 

fifth and sixth in particular, which have significantly 

higher probabilities of winning the premiership, and 

are guaranteed at least two weeks in the finals 

(compared to one currently).  

Also, the Final 10 system devised rewards the top 

two with a week off in Week 1, whereas currently 

they have little advantage over third and fourth. The 

10 team system is less predictable than the current 8 

team system, while also being fairer when 

comparing teams relative starting positions. 

Also, of course, 9
th

 and 10
th

 would have some 

chance in this system, compared to missing out 

completely in any Final 8 system. While they would 

have a low chance of winning the main prize, it’s 

not unlikely they could have an impact beyond 

Week 1, especially for a fast finishing team that 

perhaps had early season injuries. 

The simulation as run could be improved in several 

ways, as already mentioned. Accuracy could be 

improved, and realism could be improved in Group 

B percentages for example. Also, more work could 

look at changing the Group B match-ups to see how 

that would affect probabilities.  
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Abstract 

 

Sports Statistics texts tend to focus on mostly introductory statistics and probability. 

Those textbooks available generally are very USA sports focused, despite the 

increasing availability of large sports data sets from other world sports. An invitation to 

design and teach sports statistics to a group of sports psychology students, with a good 

background in data analysis methodologies, provided an opportunity to explore a range 

sporting data sets, including: cricket, basketball, tennis, Australian Rules Football, 

soccer and rugby union.Also, to introduce statistical methods and toolsused mostly in 

manufacturing (quality control)and economics (forecasting) that arebeing applied to 

monitor and predict the performance of elite athletes and teams. This unique 12 week 

unit integrates real examples and real data. The unit is delivered face-to-face through a 

mixture of lectures (including guest speakers i.e. Champion Data Statistician) and 

computer lab tutorials. Assessments involved online computer lab quizzes, journal 

articles, group projects with a presentation and an examination related to all topics. 

Evaluation of student feedback at the end of this unit was very positive and 

encouraging, especially from those with a strong interest in sports performance. 

 
Key Words: sports data, monitoring performance, forecasting, rankings and ratings.   
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