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CONFERENCE DIRECTOR’S REPORT

We welcome you to Darwin for the 12™ Australasian conference on mathematics and
computers in sport. With a variety of talks and papers ranging from scheduling, simulation,
and ratings, to visual and applied sports science, it promises to be a stimulating conference.

We look forward to presentations for Australia’s leading researchers, and thank our day one
and two keynote speakers from the Australian Institute of Sport, Dr Nick Brown and Dr
Stuart Morgan and on day three, Professor Ray Stefani.

We encourage all delegates to engage in the Panel Sessions as we steer towards delivering
cutting edge outcomes for sport through our collective research pathways.

Thanks go to ANZIAM, the MathSport Executive, our team of peer reviewers, our hard
working helpers and finally, the delegates.

Kindest Regards
Anthony and Tim

Conference Co-Chairs
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KEY ISSUES IN HIGH PERFORMANCE ANALYSIS IN SPORT

Nick Brown

Performance Science and Innovation, Australian Institute of Sport

Abstract

In this presentation, | will share examples of where the AIS currently utilises mathematics and computers for
High Performance Sport. I will go over a number of important questions in high performance analysis in sport,
and discuss the needs that the Australian Institute of Sport and High Performance sporting have in relation to
mathematics, statistics, computers and analytics. | will go through the array of data currently collected and its
current use in sport.

I will highlight key research possibilities with the AIS and potential co funding opportunities, and highlight the
synergies needed to catalyse work amongst state bodies and sporting organisations.

Keywords: AlS, High Performance




A MOVEMENT SEQUENCING ANALYSIS OF TEAM-SPORT
ATHLETE MATCH ACTIVITY PROFILE

Alice J Sweeting'®, Stuart Morgan®, Stuart Cormack” and Robert J Aughey®

! Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, AUSTRALIA;

2 Netball Australia, Melbourne, Victoria, AUSTRALIA; ° Performance Research Centre, Australian Institute of

Sport, Belconnen, Australian Capital Territory, AUSTRALIA; * School of Exercise Science, Australian Catholic
University, Melbourne, Victoria, AUSTRALIA.

Abstract

Traditional time-motion analysis of athlete physical output, or activity profile, during team-sport matches
classifies movement according to pre-defined velocity thresholds. Comparing physical output using
standardised thresholds is problematic given the differences in athlete chronological age, weight, playing
position and standard. Limited research exists on the combination of velocity, acceleration and angular
velocity movements completed by team-sport athletes. Athlete activity profiles were collected during one
quarter of a junior-elite netball match, using radio-frequency (RF) tracking. Velocity, acceleration and angular
velocity were calculated from raw, individual positional data. Each continuous variable was clustered usingld
k-means and player movements were discretised with permutations of velocity, acceleration, and angular
velocity, and assigned a unique alphabetic label. Continuous sequences of movement units were compared
using the Levenshtein distance, and a hierarchical cluster analysis found groups of similar movement patterns.
Common shared features in movement strings for each cluster were obtained by computing the longest
common substring (LCS). The percentage of all movements represented by the LCS for each cluster was
measured for various movement epoch sizes. Eighteen movement sequences were obtained over a 0.5 s epoch.
Sprinting in a straight direction with neutral acceleration was a common feature for cluster 1. In contrast, over
a 1.5 s epoch, sprinting and accelerating in a straight direction immediately followed by a sprint with neutral
deceleration was a common feature for cluster 1. The most frequent combinations of velocity, acceleration and
angular velocity movements were derived from empirical sequences of movement units. Future comparison
across team-sport athlete playing position and standard, via the density of individual athlete movement
features, could be achieved through this analysis and may assist with position-specific coaching and training
strategies.

Keywords: k-means, Minimum Description Length,Levenshtein distance, Netball

Quantification of athlete physical movement, or
activity profile, during matches is critical in
understanding performance. Investigation into

1.INTRODUCTION

Netball is a predominantly female team sport with a

large participation base within Commonwealth
countries(Steele & Chad, 1991a).Matches consist of
15 minute quarters and are contested on a 30.5 m by
15.25 m court divided into equal thirds. Players are
assigned one of seven positions which restrict
movement to specific on-court areas(Woolford &
Angove, 1992). The substitution of players is only
permitted during quarter and half-time breaks or if
an injury time-out is called. The objective of the
game is to score a goal through a ring that is 3.05 m
above the ground. Netball athletes are not permitted
to move more than one step with the ball and when
in possession, must pass to a teammate within three
seconds.

—

athlete match activity profiles can assist with sport-
specific preparation and conditioning(Di Salvo et al.,
2007; Mendez-Villanueva, Buchheit, Simpson, &
Bourdon, 2013).(Di Salvo et al., 2007; Mendez-
Villanueva et al., 2013).Examination of netball
match-play reveals a combination of short, high
intensity movement interspersed with periods of low
intensity  activity, including walking and
jogging(Steele & Chad, 1991a). Early studies on
netball activity profile investigated sub-elite
athletes(Davidson & Trewartha, 2008; Loughran &
O'Donoghue, 1999; Steele & Chad, 1991a; Steele &
Chad, 1991b) and were conducted before rule
changes to the current length of a match, currently
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15 minute quarters(Otago, 1983). Positions were
either grouped(Steele & Chad, 1991a), into
defender, midcourter or goaler, or combined entirely
(Davidson & Trewartha, 2008)in the analysis. Only
two studies (Fox, Spittle, Otago, & Saunders, 2013;
Otago, 1983) have examined elite netball match
activity profile according to individual playing
position, using video analysis.

Video analysis is commonly utilised in
netball(Davidson & Trewartha, 2008; Fox et al.,
2013; Otago, 1983) however, estimating short, high-
intensity movement using inferences from visible
movement types is error-prone. Micro-technology,
including accelerometers(Boyd, Ball, & Aughey,
2011)and  global  positioning  systems  or
GPS(Jennings, Cormack, Coutts, Boyd, & Aughey,
2010), allow quantification of athlete activity
profiles according to physical capacity(Buchheit,
Mendez-Villanueva, Simpson, & Bourdon, 2010),
chronological age(Mendez-Villanueva et al., 2013),
playing standard(Jennings, Cormack, Coutts, &
Aughey, 2012) and position.(Mendez-Villanueva et
al., 2013). Accelerometer load, as a measure of
activity profile, can differentiate between netball
playing standard at the sub-elite level (Cormack,
Smith, Mooney, Young, & O'Brien, 2013) but
remains to be investigated in an elite cohort. The
validity and reliability of GPS to measure short
high-intensity movements in confined
spaces(Duffield, Reid, Baker, & Spratford, 2010) is
likely insufficient for netball use (Duffield et al.,
2010). Elite netball matches also take place indoors,
where GPS is rendered inoperable. The lack of
research on netball match activity profile in
contemporary athletes, according to position and
playing standard, may be attributed to the types of
technologies previously available for this analysis.
Recognising the limitations of GPS and video-
analysis, radio-frequency (RF) tracking has been
developed to monitor athlete activity both indoors
and outdoors. The validity and reliability of the
method considered, the Wireless ad-hoc System for
Positioning or WASP (Hedley et al., 2010), has been
established indoors(Sathyan, Shuttleworth, Hedley,
& Davids, 2012). At present, RF technology is yet to
be deployed in competitive netball matches to
quantify match activity profile.

Athlete activity profile is typically analysed using
movement thresholds, including velocity
bands(Aughey, 2010; Gabbett, Jenkins, &
Abernethy, 2012) or arbitrary classifications(Fox et
al., 2013). However, comparison between studies is
difficult due to the multitude of inconsistent analysis
techniques and movement definitions
employed(Carling, 2013). Physical output expressed
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per minute of game time(Varley, Gabbett, &
Aughey, 2013) or as a function of physiological
capacity(Lovell & Abt, 2012) requires pre-
determined parameters to be fitted to data. Using
pre-defined thresholds to compare across and
between groups is problematic given athlete
mass(Gabbett, 2002), playing standard(Jennings et
al., 2012), position(Macutkiewicz & Sunderland,
2011) and chronological age(Gastin, Fahrner,
Meyer, Robinson, & Cook, 2013) may influence
physical output.

Data mining is a problem-solving methodology that
sources a logical or mathematical description of
patterns and regularities in a data set(Fayyad,
Piatetsky-Shapiro, & Smyth, 1996).Whilst data
mining techniques can determine the tactical
patterns  of play during elite  volleyball
matches(Jdger & Schollhorn, 2007), determine
weight transfer during the golf swing(Ball & Best,
2007) and examine basketball match score
outcome(Sampaio & Janeira, 2003), the analysis of
athlete match activity profile, using data mining
techniques, remains to be explored.

Clustering mines data according to similarity/
dissimilarity and groups items regarding these
criteria. Cluster analysis discriminated between high
and low inter-personal coordination between soccer
players(Morgan & Williams, 2012). Utilised in
analysing the performance qualities of elite track
cycling athletes to ascertain riders best suited to the
omnium event(Ofoghi, Zeleznikow, Dwyer, &
Macmahon, 2013), clustering may assist with
informing athlete selection, training and strategic
planning. Clustering, via self-organising maps
(SOM),can provide an objective method to explain
movement patterning during basketball
shooting(Lamb, Bartlett, & Robins, 2010).However,
applying a clustering approach to athlete match
activity profile, remains to be explored.

The aim of this study was to develop a movement
sequencing technique that exploits the emergent
movement characteristics of team-sport athletes.
Specifically, to discover the most frequently
recurring sequences and create insight into the
temporal sequence of movement elements that are
representative of netball athlete match activity
profile.

2.METHODS

Activity profiles were collected from six female
elite-junior netball athletes via RF tracking(Hedley
et al.,, 2010) during a competitive international
match. The clustering model was trained on five
athletes and tested on the sixth, across the first
quarter of play. The sampling rate of the RF system
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is 1000Hz, divisible by the number of tracking units
used during match play. In our sample, 22 units
were active (including players and substitutes from
two teams), resulting in a sampling rate of
approximately 45.5 Hz. Raw athlete position data
were downloaded post-match via custom-built
software (WherelsBruce?, Australian Institute of
Sport, Canberra, ACT, Australia) and exported into
the R environment (R: A language and environment
for statistical computing, Vienna, Austria). The
elemental movement characteristics for each
individual athlete over the first quarter (15 minutes
in duration) were calculated in the following way:

Velocity for each player were derived from the
position data

VAxZ+ Ay?
Vv, = e

At (1)
Acceleration was derived from velocity.
_ViVig
Ap=——= )

The angular displacement (6;) was calculated from
the dot product of consecutive movement vectors, a
and b

a-b
lell-llBII

0; = cos™! [

(©)

Next, angular velocity (rate of change in angular
displacement) was calculated as follows.

6;i—0;_
=T @)
In each case, (for Equations 1, 2 and 4), t was equal
to a time epoch that was varied between separate
experimental trials where t = 0.5, 0.75, 1.0, 1.25 and
1.50 seconds respectively. The observations for each
of these movement characteristics were classified
into groups of arbitrary n-size using a one-
dimensional k-means clustering algorithm (Wang &
Song, 2011). Four velocity clusters (notionally
Walk, Jog, Run, Sprint), three acceleration clusters
(Accelerate, Neutral, Decelerate)and four angular
velocity clusters (U-Turn, 90 degree turn, 45 degree
turn, and Straight)were declared. Figure 1 illustrates
the bandwidths represented by each cluster
described above. Figure 2 illustrates the relative
frequency of each representation in movement
classification.

——
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Figure 2. Relative frequency of clustered
observations for Velocity, Acceleration and Angular
Velocity.

This approach produced 48 permutations (4 x 4 x 3),
each of which was described as a unique
combination of velocity, acceleration and angular
velocity. A permuted identification code (upper and
lower case alphabet letters)was assigned to each
unique combination of velocity, acceleration and
angular velocity. Table 1 lists the specific alphabetic
character assigned to each permutation of velocity,
acceleration and angular velocity. We refer to these
assignments as movement subunits. A frequency
distribution of these movement subunits is displayed
in Figure 3.

The characteristics of any continuous movement are
then represented by a temporal sequence of
movement subunits. We further describe any
sequence of movement subunits as a discrete
movement sequence. Any movement sequence is
temporally discrete from other movement sequences
where the athlete does not move for the duration
equal to the time epoch t. In practice it is difficult to
identify moments where athletes are motionless in
competition, so we applied a movement threshold of
05 m.s? to temporally discretise movement
sequences. Additionally, any movement sequence
must exceed the movement threshold for at least 1

——

second (note that this will occur by default where
t>1.0 seconds).

Character | Movement Subunit Character Movement Subunit
a Run Neutral 45° m Run Neutral 90°
A Run Decelerate Straight M Run Decelerate U-Tum
b Run Accelerate 45° n Run Accelerate 90°
B Walk Neutral Straight N Walk Neutral U-Tum
c Run Decelerate 45° o Run Decelerate 90°
C Walk Accelerate Straight [e] Walk Accelerate U-Tum
d Walk Neutral 45° P Walk Neutral 90°
D Walk Decelerate Straight P Walk Decelerate U-Tum
e Walk Accelerate 45° q Walk Accelerate 90°
E Jog Neutral Straight Q Jog Neutral U-Tum
f Walk Decelerate 45° r Walk Decelerate 90°
F Jog Accelerate Straight R Jog Accelerate U-Turn
2 Jog Neutral 45° s Jog Neutral 90°
G Jog Decelerate Straight S Jog Decelerate U-Tum
h Jog Accelerate 45° t Jog Accelerate 90°
H Sprint Neutral Straight T Sprint Neutral U-Tum
i Jog Decelerate 45° u Jog Decelerate 90°
I Sprint Accelerate Straight U Sprint Accelerate U-Turn
i Sprint Neutral 45° v Sprint Decelerate U-Turn
] Sprint Decelerate Straight w Sprint Accelerate 90°
k Sprint Accelerate 45° X Sprint Decelerate 90°
K Run Neutral U-Tum y Run Neutral Straight
1 Sprint Decelerate 45° z Run Accelerate Straight
L Run Accelerate U-Tumn

Table 1. Alphabetical characters for permuted
movement subunits.

Figure 3. Frequency distribution of movement
subunits.

Any period of player movement is now described as
a set of movement sequences, where each subunit is
characterised by an alphabetic character. Movement
sequences were therefore represented by character
strings of k length, where k is the number of
composite subunits. It is also possible to quantify the
similarity of movement sequences by comparing
character  strings using the  Levenshtein
distance(Levenshtein, 1966), which is a function of
the minimum number of single-character edits
(including insertions, deletions or substitutions)
required to change one sequence into another.

3.RESULTS

The means of each of the four velocity clusters, for
combined epochs, were 1.12, 0.67, 0.27 and 1.75
m-s*(which we notionally referred to as running,
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jogging, walking and sprinting respectively). It is
important to note that these labels are arbitrary, and
in practice is might be better to simply refer to them
in such a manner as slow, slow-moderate, moderate,
and fast. The means of the three acceleration clusters
were 1.41, 0.05 and -1.25 m-st.These values are
more clearly defined as accelerating, neutral, and
decelerating. The means of the three angular
velocity clusters were149.68, 11.15, 42.72 and 88.88
degs™.

Movement sequences were generated using strings
of character values.We then conducted a cluster
analysis using the Ward method (Ward Jr, 1963). All
movement strings in our dataset are therefore
grouped proximally according to the Levenshtein
distance. A sequence analysis, using hierarchical
clustering, revealed the most common clusters. A
representative example, occurring with an epoch of
0.5 s, is displayed as a dendrogram in Figure 4
(attached).We identified 18 clusters using this
method, and an algorithm to find the longest
common substring (LCS) (Kuo & Cross, 1989) was
utilised to find the longest string that is a substring
of two or more strings, within each cluster. The two
most common clusters include EEEEE and FEEEE,
only one permuted subunit apart. Each cluster was
iterated through to find the longest common
substring, for each time epoch.The support value for
each movement sequence was measured as the
percentage of all movements represented by each
example. These values were calculated for each of
the epoch size.Thisdata is presented in Table 2.

Cluster 055 0.75s 1s 1255 155
N

String % String % String % String % String
1 Aziy 2 ZlyeAy 1 YA 1 [T s [} 10
FIzyHAE 1 b0 19 ¥y 28 THHHJ 10 HHH 10
EEE 2 ¥ 50 HHI 17 HHHJ 19 us 10
4 EEE Vil 8 1y 2 HHHHH | 14
30 o 3 TYYYYY 4 Uis s

Wiy VY

hzlyeAy 1 HIHH 3 IHHHJ 4

w 3 HHH 15 Ay )

9 ggEE 2 ZHA 3 HHA 1

10 ) 1 E 28 HHHH 11

Y 30 A 61 Uy 2

12 EEE s | ZHHHIHET | HAyy
13 ZHHH

14 | ZHHHIHHTg

1 HAyyy 1 i
1 .

15 2yyyyyyyyG 1
1
1

AVYYYYA 1

Table 2. The most frequently reoccurring
movements, per cluster, as a function of epoch
stamp and support.

4. DISCUSSION

This study is the first generative contribution to the
problem of robust athlete activity-profiling that is
independent of age, gender, sport-related constraints,
and other features of physical capacity. It is also the
first work, to our knowledge, to attempt the
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development of a movement sequencing technique
that can create insight into the temporal sequence of
movement elements in sport. Traditional analyses
focus on quantifying athlete movement as a function
of arbitrary or commercially developed thresholds.

Using a one-dimensional k-means clustering
algorithm, we were able to identify four velocity
clusters, three acceleration clusters and four angular
velocity clusters. By permuting elemental features of
movement and characterising continuous athlete
movement in the form of strings, the LCS sequence
analysis approach revealed discrete and recurring
combinations of athletic movement, representative
of athlete activity typical in netball. In the 0.5 s
epoch, running at a straight or 45° angle with neutral
and acceleration components was a common feature
for cluster 1. In contrast, the 1.5 s epoch showed
sprinting and accelerating in a straight direction
immediately followed by a sprint with deceleration
was a common feature for cluster 1.

Obtaining the most frequently recurring movements
of an athlete or a number of athletes grouped
according to position or playing standard, may have
application for coaching and conditioning purposes.
Knowledge of the movements performed, angle of
attack and acceleration qualities may assist with
planning sport-specific training and conditioning
practices. Sprinting, accelerating and decelerating
components were a common feature across a 1.5 s
epoch for the athlete tested. This data may be used to
target specific training qualities within a program.
Further analysis could focus on movements
performed before a successful or unsuccessful
attempt at goal, which may assist with tactical
planning. A movement sequencing analysis of
athletes according to chronological age, playing
standard and position should be investigated in
future analyses.

Eighteen clusters were obtained over a 0.5 s epoch
in comparison to three clusters over a 15 s
movement threshold, highlighting the importance of
under-fitting versus over-fitting a model. The
number of clusters to trim, or focus on, within a
dendrogram is an important consideration when
analysing athlete movement. For the purpose of this
investigation (and the sport examined), we chose to
trim at 25 clusters. Further investigation into epoch
and trimming selection, dependent upon the sport
considered, is warranted.

5.CONCLUSION

A movement sequencing technique was developed
to analyse athlete activity profile. Using a one-
dimensional k-means clustering algorithm, four
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velocity clusters, three acceleration clusters and four
angular velocity clusters were identified. The LCS
sequence analysis approach revealed discrete and
recurring combinations of athletic movement,
representative of athlete activity typical in netball.
Eighteen clusters were obtained over a 0.5 s epoch,
in contrast to three clusters over 1.5 s, highlighting
the importance of under-fitting versus over-fitting a
model. The three clusters over 1.5 s reveal a
combination of sprinting, acceleration and
deceleration qualities in a straight direction.
Examining athlete activity profile using this
movement sequencing technique, in contrast to
traditional analyses, may assist with position specific
training and conditioning practices.
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Figure 4. Coloured dendrogram of hierarchical clustering.
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ALTERNATIVE NINE TEAM AFL FINALS SYSTEMS

Anthony Bedford and Andrew Gonn
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Abstract

In this paper we investigate a variety of possible systems for the AFL finals if they were to move to a nine
team final series. A number of issues arise that hamper traditional style systems - the largest hindrance the
amount of time the final series needs to be played. Further, nine team finals do not lend themselves to an
elegant tree like structure. In this paper, we bring together a number of concepts and thrash them through
simulations. We consider the results of the systems through the variation of parameters such as scoring and
home advantages. We also look at pool type approaches and tree structure models.

Keywords: Finals, simulation, scheduling

1. INTRODUCTION

Prior to 1972 the most common finals system was a
four team, three weeks structure. There were twelve
teams in the VFL from 1944 until 1986 inclusive.
From 1972 to 1990 inclusive a final five was used,
expanding to a final six for three years to 1993. The
Macintyre Final 8 was adopted in 1994 and used up
to and including 1999. This matched 1% and 8"
against each other in Week 1, and 2" against 7" etc.
The two lowest ranked losers would be eliminated in
the first week, meaning that individual matches’
results did not have predetermined consequences.
Since the year 2000, a new final 8 system replaced
the Macintyre Final 8. This was due to a number of
deemed unsuitable scenarios in the preceding years.
This is still in use in 2014. The current system will
not be explained in this project, however the
probabilities of teams winning the premiership will
be referred to, as calculated by Lowe and Clarke
(2000).

With the inclusion of two new clubs in recent years
(Gold Coast Suns, Western Sydney Giants) the AFL
are again considering adopting a new system, in
which there would be nine or ten teams.

This paper focuses on nine team systems, in an
attempt to improve the ‘fairness’ of the current
system, which has issues inherent in the model. The
criterion for measuring the fairness of any system
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was discussed by Monahan and Berger (1977) in
regards to hockey, and this paper centres around
three of their principles;

[] Maximise the probability that the highest ranked
team wins,

[] Maximise the probability that the two highest
ranking teams meet in the grand final,

[1 The probability of a team finishing in any
position or higher should be greater than for any
lower ranked team (the expected final positions
should mirror the original rankings).

We also have the added constraint of a four week
window, and the desire to maximise the number of
matches to increase revenue potential and fan
participation,  whilst  avoiding  meaningless
encounters. In this paper, we shall divide the work
into the nine and the ten team approaches.

2. METHODS

For the case when all teams considered have equal
probability of winning any game, the premiership
probabilities for each team can easily be calculated
mathematically, and has been done so for a couple
of systems. It is common practice to test systems
primarily employing the equal probability model.
The theory behind it being that a model should be
advantageous to higher ranking teams even when all
teams are considered equal. But to comprehensively
test the robustness of any particular model, a range
of probabilities should be explored.
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Calculating Premiership probabilities becomes
exponentially more  difficult when adding
complexities such as a superior team, or even home
ground advantage. Therefore to calculate the
premiership probabilities, models were created on
Microsoft Excel and simulated with Simulation 4.0.
Two methods were employed for simulation, the
first is score based, which generates scores from a
given normal distribution, the second binomial. The
methods employed can be used to test the fairness of
all types of sporting competitions. It is similar to a
decision tree, in that at each node only one path can
be chosen, hence could be used in that regard, or any
where an optimal decision is needed to be
calculated.

2.1 Nine team system
2.1.1. The Score System

The purpose of the simulations is to incorporate the
different strengths of the different teams to analyse
the fairness of the system. For this reason, a number
of different potential scores should be tested.

A score was generated for every team and their
opponent, for every match, based upon a chosen
normal distribution for that team. For the majority of
simulations the standard deviation of scores was
held constant at 10 points. Some of the systems were
simulated with a standard deviation of 20, with the
results giving similar distributions as when the
standard deviation was 10, although less amplified

The first of two variables which determined the
mean for any given simulations was an advantage
given to the ‘home’ team (the team with a higher
ranking), where the advantage isf=0, 3, 6, 9, 12 or
15 points. The second was based on ladder position;
the first simulation has all teams equal with a mean
of 100, in further simulations the mean scores of the
lower placed teams were lowered by equal
increments (Table 1). For example, in the second
simulation where the increment is half a point, the
top team keeps a mean of 100, but the second team
has a mean of 99.5 points, the third team 99 points,
and so on. In the third simulation the decreasing
increment was one point, giving the second team a
mean of 99, the third 98, and so on. The increments
were g =0, 0.5, 1, 1.5, 2, 2.5, therefore a total of 36
score simulations were run for each model (fx g =6
X 6 = 36).
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Simulatian: 1 2 E] 4 5 ]

0.5 1 15 2 25
100 100 100 100
95.0 9.5 98.0 975
98.0 97.0 96.0 95.0
97.0 95.5 4.0 2.5
6.0 94.0 2.0 an.0
95.0 92.5 90.0 875
94.0 91.0 28.0 85.0
93.0 29.5 6.0 825
92.0 83.0 24.0 80.0

Difference: o

100
100
100
100
100
100
100
100
100

team 1
team 2
team 3
team 4
team 5
team &
team 7
team 2

WM M W W LW W W

[ T I R - R -

D e o e n

team 9

Tablel: Scores for the differing simulations based on
ladder positions

2.1.2. Binomial Probability System

To properly test the fairness of the models, it is
beneficial to produce an alternate method for
simulating the matches. This second method devised
was not able to be used on the Division models, as
those models need a score in order for a percentage
to be calculated (in the case of all teams winning one
game, the team with the highest percentage will
qualify).

The binomial method involves picking the winner
based on chance and is similar to the equal
probability model. This variable ranged from 0.5 to
0.75, in 0.05 increments, the advantage given to the
‘home’ team (the team with a higher ranking),
resulting in six binomial simulations for each model.

2.2. Difference between Teams

It is thought that when teams are closely ranked their
abilities are evenly matched, creating a close, and
therefore more exciting game. In an effort to
measure the inherent excitement of a system, the
average difference between the rankings of matched
up teams was calculated by the simulations.

2.3. Analysis

Analysis was completed using MS Excel. In most
cases results will be probability distributions for
either winning the Premiership or reaching the
Grand Final in graph form. While the actual
percentages may help in deciphering advantage, it is
important to realise that the shape of the distribution
is the most important aspect. For this the reason, the
axes of most graphs have been lightened. In these
cases the x axis will be the teams from first to ninth,
the y axis will be percentage with range of 0-100%.

'



2.4. Number of Trials

To investigate the number of trials needed to
produce accurate results, the heuristic probabilities
for one of the systems were calculated and compared
with simulation results to find a MAPE, the mean
average percentage error. A MAPE of less than
0.01% for 50,000 trials was achieved - which is an
acceptable level of error for the simulations.

3. RESULTS
The existing systems are details below:
Team Final 4 Final 5 Final 6 | R Final 6 MF8 RMF8

1 37.5 37.5 25 25 1875 18.75
2 37.5 25 5 25 18.75 18.75
3 12.5 25 18.75 18.75 15.625 18.75
4 12,5 6.25 18.75 12.5 12.5 18.75
5 6.25 6.25 12.5 12.5 6.25
6 6.25 6.25 9.375 6.25
7 6.25 6.25
8 6.25 6.25

Table 2:Mcintyre System Likelihoods (Clarke

(1996))

The revised Mclntyre final system is covered in
detail by Lowe and Clarke (2000). The obvious
flaws are the top4/bottom4 disparity. It is argued by
some that the RMF8 is too 'top heavy', in that only
the top four sides can possibly win. Table 3 lists
every Premier since the models’ inception, which
seems to agree with that hypothesis — no team has
won from outside the top four. The Minor Premier
has only won 6 out of the 14 years, perhaps a result
of the unfair nature of this model.

Year Minor Premier P_Ds_ition Premier T-:ﬂm?'[
Finished Position

2000 |Essendon Premiers

2001 |Essendon 2nd Brisbane 2nd

2002 |Port Adelaide 3rd Brisbane 2nd

2003 |Port Adelaide 4th Brisbane 3rd

2004 |Port Adelaide Premiers

2005 |Adelaide ath Sydney 3rd

2006  (West Coast Premiers

2007 |Geelong Premiers

2008 |Geelong 2nd Hawthorn 2nd

2009 |StKilda 2nd Geelong 2nd

2010  |Collingwood Premiers

2011 |Collingwood 2nd Geelong 2nd

2012 |Hawthom 2nd Sydney 3rd

2013 |Hawthorn Premiers

Table 3: Existing system results (2000-13)

We consider two broad systems — Divisions and Roll
Overs.
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3.1 Divisions

In a divisional system the qualifying teams are split
into groups (divisions), whereby they play a round
robin, usually playing one game against every other
team in their division. Both the FIFA World Cup
and the FIFA World Cup Finals are based on this
model - the 32 World Cup Finals qualifying teams
are divided into groups of four teams. After each
team has played their three group members, the top
two teams advance to the next round. It’s clear that
the probability of any one team advancing past the
round robin stage is heavily dependent on which
other teams they are grouped with. For this reason
three different groupings were simulated for this
paper, Divisions A, B and C.

A B B B

(4
2 2 2 a
a

a

e o wln

v oo e ®

T

T

7 8 E 2

Division A Division B Division C

There are obviously many more options for the
groupings, so this paper focuses on holding Group B
steady with second, fifth and eighth. Group A and C
always includes first and third respectively, with
fourth, sixth, seventh and ninth rotating. Holding
first, second and third in groups A, B and C
respectively, there are 90 combinations possible.

Note that this system differs from the World Cup
Finals model where there are four teams competing
in each group. As opposed to the World Cup which
has three divisional games, in a nine team system
with three divisions there are two matches per team.
The loss of a game translates to a much higher
importance being placed on each game played.
Using the World Cup example who have three
divisional games, a team could lose their first match,
win the next two and still be well placed to proceed
to the next round. With only two matches, a loss in
the first would significantly decrease the chances of
proceeding past the round robin stage, especially for
the lower ranked teams.

Further to assigning teams into groups, there are
many possible variations on any of these systems
through the order of scheduling. Consider the
hypothetical group of teams 1, 2, and 3 where the
order of the matches is as follows; 1v2, 1v3, 2v3. If
1 wins both matches the last is a dead rubber; its
outcome is meaningless (apart from improving
percentage in order to gain the wildcard entry).
Therefore the best two teams should meet last, as
both are expected to beat the third ranked team. This
gives the matchups: 1v3, 2v3, 1v2 or 2v3, 1v3, 1v2.
In either case a dead rubber would eventuate if team
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3 won both its games. So to avoid a dead rubber, the
winner of the first match must always play in the
third match.

There is also the problem of when to schedule the
byes for each team. It is difficult to predict in which
week any particular team would want to take their
turn of sitting out. Would the top team want to take
their bye in the second week to be fresh for the third
week, or would they assume victory in these games
and want to rest up in the third week for tougher
opponents in later rounds? An interesting variation
on these systems could be to give the top ranked
team the choice of when to take their bye, either
week 1 or week 2, but this is beyond the scope of

this paper
,:\—7_7 N =
P S .

=__ ~_ "

Figure 1: Desirable Shapes of the three division
systems

Adapting a divisional model for the AFL finals
system would be tricky for continuous reasons — if it
were decided to move to a ten team system, a whole
new system would need to be introduced, instead of
modifying the current model. Changing the system
may be a big enough change, so to change the type
of system may create an overload of confusion. One
of the major drawbacks of all Division models is that
it would be impossible to complete the series in four
weeks, failing one of the supplementary goals.

The variations available to this type of system make
the possibilities for future research endless and
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exciting. As discussed, 90 combinations of divisions
exists (holding 1, 2 & 3 constant), but realistically
some of these combinations could be ruled out
logically, possibly simplifying the experiment.

3.2 Roll Over

The Roll Over systems were originally created for
this paper, named so because the matchups in the
first week ‘roll down’ in ladder order. All Roll Over
systems consist of four matches in Week 1 of the
finals; one qualifying final, 2v3, and three
elimination finals, 4v5, 6v7 and 8v9. First is
awarded a first round bye in all systems. These
systems were created with the primary purpose of
decreasing premiership probabilities with decreasing
ladder position.

3.2.1. Roll Over A

Figure 2 shows the structure map of Roll Over A.
The Roll Overs all keep within the boundary of four
weeks by allowing first place a massive advantage
of a bye. The pathways shown on the map are colour
coded — blue is for the winner, red for the loser. The
second slot in match H is taken up by the highest
ranked loser from the previous week, shown in a
dotted red line.

Wweek L Grand Final

Week 3

Figure 2 Roll Over A

The top ranking team receives massive benefits for
securing the Minor Premiership with a highly
advantageous draw. Granted the only bye of the
series in the first round, in Week 2 they play the
lowest ranked winner from Week 1, giving them a
high probability of reaching Week 3 with little
physical strain. But this directs to a massive flaw in
Roll A, and a match fixing paradise; first can get
smashed in Week 2 and be guaranteed to play in
Week Three. Although the high significance of
winning a home final for the next round should be
sufficient to distinguish this course of action, in
round 3 it is possible for their opponent not to be the
lowest ranking team left. This could be seen as
unfair, but it is a result of both fulfilling the goal
criteria of the top two teams playing in the Grand
Final, and refraining from scheduling repeat matches
(second and third already play in Week 1).
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Final Position
Team 1 2 3 4 5 6 7 8 9 EFP
1 25.11 24.81 50.07 o 0 o o [} 215
2 1865 1871 2494 1245 2525 ] ] 1] 3.07
3 1539 1566 1251 1893 2476 1274 ] 1] 3.60
4 /.92 175 3.08 12.58 1238 6.30 45.98 o o 533
5 1715 118 315 12.54 12.49 6.27 50.02 o o 5.33
6 B.42 £.21 3.20 932 12.65 12.39 49.81 o 6.02
7 6.35 6.32 3.04 921 1247 1243 a 50.19 a 6.03
g 6.15 6.22 o 1241 24.79 a o 5043 6.71
9 6.25 6.53 0 12.57 25.08 a o 49.57 6.66

Final Position
Team 1 2 3 4 5 3 7 3 9 EFP
1 2476 2517 5007 o 0 ] 1] 0 ] 225
2 18.93 18.82 2491 1252 24.81 o [} 0 o 3.05
3 15.60 15.64 1247 1863 2533 1233 [} 0 o 3.59
4 7.89 167 3.06 1242 12.49 6.37 50.10 o o 5.33
5 781 191 3.23 1263 12.44 6.08 49.90 0 o 5.32
6 6.14 6.28 303 9.28 12.69 1247 o 50.10 o 6.04
7 6.23 6.16 32 .26 12.24 1299 o 49.90 o 6.04
8 6.22 6.05 0 1272 2485 o 0 50.16 6.70
9 6.42 6.29 12.54 24.91 0 0 49.84 6.67

Table 4 Roll Over A: Percentage chance of team
finishing in any position, EFP - Equal probability
model

Figure 3 P(GF) by points diff and mean diff.
3.2.2 Roll Over B

In an effort to decrease the gap in advantage first has
over the rest of the field in Roll Over A, first will
now face a higher ranking team than the winner of
Match A. Roll Over B is basically the same as Roll
Over A, the only difference being the winner of
Match A now plays the winner of Match D, and after
their bye, first plays the winner of Match C

Weskl Week 2

exser{a]
o 8 winnarfh]

o

winners)

Grand Final

Week 2

out

wirner|e]
high loser

i

W[ winnara)
winner(d)

paths

Figure 4 Roll Over B

The probability tables for Roll Overs A, B and D
reveal almost identical probabilities for the case of
teams being considered equal. This is due to the
systems changing slightly in order to suit particular
teams, but when there is the same chance of beating
third as eighth, these subtle differences will not be
seen. They are included for completeness.
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Table 5 Roll Over B: Percentage chance of team
finishing in any position, EFP - Equal probability
model

,3/ :

,/“‘

Figure 5 P(GF) by points diff and mean diff.

The simulations surprisingly showed that switching
the games had no effect on either the Premiership
probabilities or the Grand Final Probabilities, as Roll
B gave almost exactly the same results as Roll A.
Investigation revealed the results differed by roughly
0.04%.

3.2.3 Roll Over D

A big disadvantage in the previous Roll systems is
that in Week 3, given favourites win, the matchups
are 1v3 and 2v4. Roll D was designed with the goal
of scheduling the more traditional matchups 1v4 and
2v3 for week 3, which is the major difference in Roll
D from its predecessors. It is an adaption of Roll A,
rather than Roll B.

Week 2 Weel

Toser(a) |.
L8 winnergy [
[, wneria)
o winner ()
.

Grand Final

er
W winner(e)
high laser
0]
e .

2
S
H
=

Figure 6 Roll Over D

Although this seems a fair system, it has some
downfalls. In the unlikely event first lose their week
2 match, they will play that same team the following
week. One major advantage of this system is the
likely event of a second versus third matchup in both
week 1 and 3. In a season where the top team is a
clear favourite for the premiership (although not
often true, or currently true, it’s not an outrageous
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assumption), having these two teams battle twice
will be a good test to see who gets the honour of
playing in that years’ Grand Final. It was not
expected that the probability distributions for this
system to be much better than previous systems,
however as the matchups differ, simulations have
been run.

Final Position

Team 1 2 3 4 5 6 7 8 9 EFP
1 2512 2495  49.93 0 0 0 [ 0 225
2 1269 1861 2484 1254 2532 0 [ 0 207
3 1544 1591 1255 1842 2499 1268 [ ] 2560
4 7.98 7.60 315 1246 1255 626 5001 0 533
5 8.00 774 307 1243 1251 6.25 4999 0 532
6 6.11 6.29 319 9.30 1249 1253 o 50.09 0 6.04
7 6.40 634 327 940 1214 1253 o 49.91 6.02
] 6.14 621 0 1277 2503 [ 0 4985 | 668
9 6.13 634 0 1267 0 2471 o 0 5015 | 669

Table 6: Roll Over D: Percentage chance of team
finishing in any position, EFP - Equal probability
model

2 p ™
N Y Y
N N N

Figure 7 P(GF) by points diff and mean diff.
3.2.4.Roll Over C

There are multiple reasons, some financial and fan
based, for the AFL desiring to schedule more
matches. In an effort to achieve this goal, Roll Over
C (Figure 8) was designed. Featuring a record
breaking 11 games, where seven of the nine teams
are guaranteed to play in two finals (the loser of
match D: 8v9 is eliminated and first has a first week
bye).

Week 1 Week 2 Week 3 Grand Final

g
| i 9 ¢

ou
2

a ;
E]

winner (a)
winner (d)

loser (a)
oser (b)

t
e

winner (g)
winner (f} winner (i}
winner (h)

ef

winner (b) winner (e
b f ( h (e)
winner (x)

winner ()

&
3
7

Figure 8 Roll Over C

loser (c) win
®
1

While the first week matchups were devised for
close games, the second and third week matchups
were designed to favour the higher ranking teams.
Assuming the favourites win, the week 2 matchups
are 2v8, 4v6, 3v5 and 1v7, obviously fairer to the
higher placed teams. In a perfect world the matchups
might be 3v6 and 4v5, but that would repeat a first
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week match. The winner of match A is given the
lowest ranked team in an attempt to lessen the
massive advantage of first’s first week bye. Again
assuming the favourites win, the week 3 matchups
are 1v4 and 2v3, as discussed previously, the most
desired for that round.

Final Position
Team 1 2 3 4 5 1) 7 8 9 EFP
1 12.76 12,55 24.87 o 49.83 0 Q 0 0 362
2 12.47 12.60 18.88 6,13 2515 2497 Q o 393
3 12.28 12.70 18.65 6.14 12.56 2518 12 o 4.20
4 1253 1219 1561 9.25 937 2221 15.65 3 o 4.36
5 12.42 12.65 930 15.75 3.09 1544 22.00 9 i} A4.66
6 1250 12.39 645 18.68 o 12.40 24.98 1261 i} 481
7 1257 12,50 6.25 1874 o 0.00 24.88 25.06 0 5.06
& 6.26 6.26 1255 o 0.00 Q 25 50.15 7.19
9 6.22 6.17 1276 o 0.00 Q 25 49,85 7.18
Table 7: Roll Over C Percentage chance of team

finishing in any position, EFP - Equal probability
model

Figure 9 P(GF) by points diff and mean diff.

An advantage of this system is that when all teams
have an equal chance of winning each game, teams
One through Seven each have an equal chance of
winning the Grand Final. However, when advantage
is introduced the results are similar to the previous
models, but the advantage is more even over the
field. This means that if there is a season where the
finals qualifiers are somewhat close in ability (such
as the current year), it would be a very exciting
series, with excellent first week matches (like all
Roll Overs), and a very fair system for higher
ranking teams in later weeks. The extra game this
system has over its predecessors, and extra three
over the RMF8, would bring in a considerable
amount of spectators for the AFL.

4. DISCUSSION

To confirm the systems behave in the correct way,
the advantage given to each team by the different
systems was graphed individually, Figure 25 below.
It seems RMF8 is a clear loser; second through fifth
lose advantage, a definite drawback of the current
system. Hardest done by is second, who gains little
more advantage than the rest of the field. Roll Over
C is arguably best. Although it gives first place a
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decent advantage, it is lower than the others; the
difference is picked up by some of the lower ranks
teams (fourth to seventh), a sizable percentage
increase in some cases.

Table 8: The advantage given to each team.
Difference between consecutive means = 0. The x-
axis is advantage given in the form of points (0-15),
the y-axis still percentage (0-100)

The following table displays a “x” if a certain goal
was met. Added to the predetermined goals are
“Difference” and “Games”. Difference is the
average difference of the competing teams, Games is
the amount of games played in the system.

Roll Over A | Roll Over B | Roll Over C | Roll Over D RMF8
Maximise the probability that the
highest ranked team wins fod fod ] ] ol
Maximise the probability that the two
highest ranking teams meet in the » » » » »
grand final
The probability of a team finishing in
any paosition of higher should be ~
greater than for any lower ranked team
Difference 231 2.33 2.46 2.48 2.23
Games 10 10 11 10 9

Table 9: Comparison of systems

If considering only the factors listed in the above
table, again Roll Over C is clearly the best. Not only
is it the only system which fulfils all criterion, but
the most games are played under its structure. It is
interesting to note the current system had the best
Difference, but all are close enough to negate
significance.

The mean and standard deviation of the AFL top
nine teams in 2013 was calculated and is displayed
in Table 10. These scores were used in a simulation
for each of the systems shown if figure 10.
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Pos. Team Home foveay

mean 5., | mean s
1 gHawthomm 11145 2298 |11791 2534
2 Q==elong 10827 1797 |109.73 2104
3 Qfremantle 10055 2943 | 3445 3204
4 faydney 104,73 2993 | 9927 2982
5 pRichmond 9345 2407 |10236 2753
& gCollingwood 102.B2 1945|9245 2203
i JPort Adelaide 9100 2245]9545 2336
8 QCarlton 101.18 2221|9200 2241
9 IM:fth Melbourne | 9891 381X 111082 1743

Table 10: Home and away mean and standard
deviation of the top AFL teams of 2013.

Premiers Grand Finalist

Figure 10: Simulation of all Roll Overs and RMF8

It was surprising that all the systems produced
similar results. The most obvious thing to do with a
prediction is compare it with the actual, and these
models somewhat fail; Hawthorn beat Fremantle in
the Grand Final, although Fremantle won the
unwinnable game the week before in the Preliminary
Final, beating arguably the best team of all time,
Geelong, in Geelong. It is interesting to note the
spike for North Melbourne, due mainly to their
impressive away mean score. Even though they do
have that high mean score, it often wasn’t enough to
upset the top sides, proving the strength of the
models.

The expected position increases with increasing
teams for all systems. RMF8 can again be seen to be
the one which is least fair, due to the ever present
‘equal for top four and bottom four’ nature of that
system. It will be interesting to see these graphs
when advantage is introduced, as they may tell a
different story.
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Figure 11: The EFP for the systems

Figure 12: Mean Difference Comparisons

For the final analysis it was decided to compare the
chance of reaching the Grand Final under all the
Roll Overs and the current system. Figure 28 has
these probabilities for when there is no home ground
advantage, but the mean for consecutive teams
changes slightly. The clear best of the Roll Overs up
until this point has been C, but the left graph along
with the probability tables shows its major
weakness; when all teams are considered equal, first
to seventh have equal chance of playing in the final.
However, with slight advantage increase it improves
dramatically. Again the worst seems to be RMFS8,
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whose massive drop from fourth to fifth is

mistakably prevalent, even in the rightmost graph.

5. CONCLUSION

All systems tested met most of the criteria and were
shown to be fairer than the current system. Of the
original systems Roll C was shown in many cases to
have a fairer spread of winners while still giving first
its due advantage, but has inherent flaws. The
systems each have considerable benefits and
drawbacks, the best being a matter of opinion.
Although some unfavourable events may occur, to
achieve the desired outcomes there may always be
some unfairness inherent to the system. The division
method is an exciting idea which deserves further
study.
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Abstract

The increase in recent seasons in interchange rotations in the AFL has had a substantial impact on various
facets of the game. These include the speed of general play, player exertion and intensity, and the incidence of
collision and non-collision injuries. The aim of this research was to examine the longitudinal impact of one or
more players being injured (to the extent that they are unable to return to the field) on scoring patterns,
interchange rotations, and likelihood of either team winning the match. Differences in each of these outcome
variables were analysed for matches where no injuries occurred, with these matches being compared with
matches where one, two, and three injuries were sustained by either team. Results were compared across the
2007 to 2010 AFL seasons and indicated a substantial negative impact on a team’s ability to score and rotate
players on and off the interchange bench when at least one injury was sustained. The net effect was a decrease

in the likelihood a team would win a match.

Keywords: AFL, injury, interchange rotation, injury effects

1.INTRODUCTION

Theincrease in recent seasons in interchange
rotations in the AFL has had a substantial impact on
various facets of the game. These include the speed
of general play, player exertion and intensity, and
the incidence of collision and non-collision injuries.
The elevation in player injuries has been projected to
further increase over the next five to ten years.
Based on research conducted by the AFL and
research associates, The AFL Laws of the Game
Committee proposed a series of changes to the
interchange system in order to curb the increase in
player injuries. Suggested amendments included:

e Retaining four players on the interchange
bench, and capping interchange rotations at
80 per team;

e Reducing the number of players on the
interchange bench to three, and introducing
one substitute player per team;

e Reducing the number of players on the
interchange bench to two, and introducing
two substitute players per team.
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One consequence of the increase in general player
injuries is the heightened incidence of player injuries
during a match, and the subsequent limitations
placed on teams who are unable to rotate all 22
players on and off the ground. To enhance our
understanding of the impact of player injuries on the
outcome of games played in the AFL, further
analysis is required. Specifically, limited data is
available on the impact of one or more players being
unable to return to the field after sustaining an injury
during a game. In effect, it is possible that the
likelihood of a team winning a match following a
player being injured is reduced, and this may be
compounded by a team sustaining multiple injuries
during a game.

In collaboration with the AFL, the RMIT University
Sports Statistics Research Group examined the
impact of player injuries on match outcome AFL
matches. This was achieved by incorporating several
variables into a detailed analysis. These variables
included:

e In-play injury incidents for AFL matches
played over the 2007 to 2010 seasons;
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e In-play scoring patterns for teams prior to
and following an injury;

e Number of interchange rotations prior to
and following an injury;

e Win percentage of teams who sustain one
or multiple injuries during a match.

The aim of this analysis was to examine the
longitudinal impact of one or more players being
injured (to the extent that they are unable to return to
the field) on scoring patterns, interchange rotations,
and likelihood of either team winning the match.

Examination of the effect of player injuries will be
analysed at multiple levels, including the impact of
player injury on points scored and points conceded,
and the association between the margin at the time
of the injury and the final margin at the end of the
game. Finally, the effect of injury on interchange
rotations will be reviewed, with respect to the team
who sustained an injury as well as the opposition
team who maintained a full complement of players
to rotate for the remainder of the match.

2.METHODS
Multi-Phase Analysis

In order to address the aforementioned research
aims, a multi-phase analysis was conducted.
Analyses were completed on the association
between single and multiple in-game injuries and:

Scoring patterns;

Interchange rotations;

Points conceded,;

Differential scoring;

Likelihood of winning the match.

Each of these analyses was conducted using
statistics provided by Champion Data. This data
incorporated all AFL matches played during the
2007, 2008, 2009, and 2010 seasons. Variables that
were utilised for all games regardless of whether an
injury was sustained included:

Season;

Round;

Match code;

Home and away team;

Home and away team final score;

Home and away team interchange rotations;
Quarter length (seconds);

Scores at each quarter break.

—
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Additional variables that were incorporated for
matches where at least one injury occurred:

Name of the player who was injured;
Quarter the player was injured;

Time in the quarter the player was injured,;
Team scores at the time of injury;

Team interchange rotations at the time of
injury.

Research Constraints

Whilst all matches played from 2007 to 2010 were
incorporated in the analysis, a constraint was placed
on matches where multiple injuries occurred. These
matches could be incorporated when only one team
had sustained injuries (e.g., 2 injuries to the home
team, and no injuries to the away team). This
constraint was placed on the analysis given that
findings would become considerably more
ambiguous had games where injuries occurred for
both teams been incorporated (e.g., one injury each
or two injuries to one team and one injury to the
other). In cases where injuries occur for both teams,
each and every match situation is unique, given that
injuries occur for each team at different times. For
example, the home team may sustain an injury in the
first quarter, whilst the away team sustains two
injuries in the third quarter. Endeavouring to
establish which team was more disadvantaged would
require considerable speculation, and thus was
removed from the analysis.

3.RESULTS

Points Scored

In the first phase of this analysis, an examination of
the effect of injuries is undertaken with respect to
scoring. Figure 1 presents the scoring trends of all
AFL teams for the 2007 to 2010 seasons for
matches where no players were injured, and either
one, two or three players were injured over the
course of the game. Injuries only refer to those
players who left the ground and were unable to
return for the remainder of the match.
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when two or three players were injured in the one
- 2007 . - . - -
——2008 game. What is most striking is the steep reduction in

2009 - - P
—2010 scoring potential when two or three injuries occurred
in the one match during the 2010 season. In effect,
\ during 2010, two or three injuries resulted in a

scoring rate of 5 and 16 points lower than equivalent
matches where no injuries had occurred. The
reduction in scoring potential when injuries occurred
in 2010 may be related to the increase in interchange
rotations. Specifically, the reduced potential to rotate
players following an injury may be associated with
the decline in scoring following multiple injuries.
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Findings from Figure 1 can be further interpreted
based on statistics presented in Table 1. This table
provides data on the change in scoring potential
following one, two or three injuries when compared
with scoring potential when all 22 players are
available, that is, 18 players on the field, and four on
the interchange bench.

T T T T
Mo Injuries Cne Injury Two Injuries Three Injuries

Number of Injuries
Figure 1. Scoring trends for the 2007-2010 AFL
seasons for teams with no injuries and one, two and
three injuries.

Results in Figure 1 indicate that injuries resulted in a
general decline in a team’s ability to score when
players were injured. This was particularly the case

Quarterly Scoring Quarterly Scoring Rate When Compared With Matches Where

Rate When No No Injury Was Sustained
Season .
Injury Was
Sustained One Injury Two Injuries Three Injuries
2007 23.95 +0.1 -2.35 -6.95
2008 24.06 -1.81 +3.37 -4.26
2009 22.14 +0.02 +0.16 -4.89
2010 22.21 -0.98 -5.13 -16.11
2007 — 2010 23.27 -0.92 -1.82 -9.54

Table 1. Tabulated scoring trends for the 2007-2010 AFL seasons comparing scoring rates of teams with no
injuries with teams with one, two and three injuries.
points less per quarter, and three injuries resulted in
Table 1 indicates that in 2010, having one injury 9.5 points less per quarter.
resulted in scoring 1 point less per quarter, two
injuries resulted in scoring 5 points less per quarter, Interchange Rotations
and three injuries resulted in scoring 16 points less
per quarter.In 2007 and 2009, having one injury did It can be hypothesised that the greatest effect of in-
not influence scoring potential of teams when game injuries will be on interchange rotations from
compared with teams who had a full complement of that point in the match onwards. This has been a
players available.In 2007, 2008, and 2009, having particularly salient issue in seasons considered,
three injuries resulted in reduced scoring potential of given the rapid increase in player rotations during a
between four and seven points per quarter, however game at the time.
in 2010, this figure increased to over 16 points per
quarter, which is the equivalent to over five goals Analysis of the average interchange rotations for
per half of football. five minute periods throughout a match in 2010
sheds light on this increase. During 2010, teams
When examining all data from 2007 to 2010 averaged approximately five interchange rotations
combined, having one injury resulted in scoring 1 for every five minute period in a match, which
point less per quarter, two injuries resulted in 2 equates to one interchange rotation per minute.
Based on theinterchange resources that are required
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to maintain this level of rotations, it can be predicted
that in-game injuries will have a substantial effect on
the ability of teams to rotate their players at the
frequency that has been evident during 2010.

In this analysis, the frequency of player rotations
was examined for the 2007 to 2010 seasons.
Specifically, average rotations were computed for
teams who had sustained no injuries, and those
teams who had sustained one, two or three injuries,
refer to Figure 2.

Figure 2. Interchange rotation rates for the 2007-
2010 AFL Seasons for teams with no injuries and
one, two and three injuries.

As can be observed in this figure, player injuries had
a substantial impact on the capacity of teams to
rotate their players during every season over the four
seasons considered.  The steepest decline in
interchange rotations was evident in 2010, when a
team sustained a single injury. Two injuries was
associated with between five and ten less rotations
per quarter across each of the four seasons, whilst
three injuries was associated with a steep decline in

7 loe the capacity to rotate, and this was particularly
5] — 20 evident in 2008 and 2010.
% s From this analysis, it can be identified thatthe
K] rotation rates that were evident in 2010 are not
g . tenable when a team suffers a single injury. This was
8 not the case in 2007, as results in Figure 2 indicate
€ that interchange rotations were consistent regardless
g of whether a team had no injuries or one injury
Y o during the match. An alternate depiction of the data
in Figure 2 is presented in Table 3.
o
No Inljun'es One :njury Two Ir|1juries Three Ilnjuries
Number of Injuries
Quarterly Rotation ~ Quarterly Rotation Rate When Compared With Matches Where
Season Rate When No No Injury Was Sustained
Injury Was . . Lo
Sustained One Injury Two Injuries Three Injuries
2007 15.16 -0.49 -4.71 -10.66
2008 20.54 -6.83 -6.14 -15.44
2009 23.39 -6.18 -8.54 -12.74
2010 29.21 -13.44 -9.95 -17.21
2007 — 2010 21.47 -5.89 -6.33 -13.04

Table 3. Tabulated rotation rates for the 2007-2010 AFL seasons comparing interchange rotations of teams
with no injuries with teams with one, two and three injuries.

Table 3 indicates that in 2010, having one injury
resulted in an average of 14 less interchangerotations
per quarter, two injuries resulted in 11 less
interchange rotations per quarter, and three injuries
resulted in 18 less interchange rotations per
quarter.The impediment that one injury placed on
interchange rotations in 2010 is double that of 2008
and 2009, and 13 times that observed in 2007. This
finding indicates that under the then current
circumstances, interchange rotation rates recorded in
2010 are not sustainable when less than four places
are available on the interchange bench.

—
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Overall, between 2007 and 2010, having one injury
resulted in an average of 6 less interchange rotations
per quarter, two injuries resulted in 6.5 less
interchange rotations per quarter, and three injuries
resulted in 13 less interchange rotations.

Points Conceded

Points conceded refers to the number of points
scored by the opposition, which for the purposes of
this research, refers to the team who does not have
any injured players. Again, the number of points
scored is examined with respect to quarter of
football, and thus an analysis of the number of
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points conceded per quarter was reviewed when a after sustaining one injury in 2007 and 2010. This
team had one, two, or three injuries within the one finding must be interpreted in the context of the
game. Figure 3 presents the average number of points scored analysis undertaken in the previous
points conceded in 30 minutes of football when section. In effect, despite a mild decrease in points
teams had no injuries, or one, two or three injuries. conceded in 2010, teams were scoring at a slower
rate after sustaining an injury in this season, thus the
net result remains negative for teams who sustain an

45 - 2007 ..

. — 28 injury.

E ~=2010

G 40 Sustaining two injuries resulted in teams conceding
8 more points during 2008, 2009, and 2010. Whilst
8 35 this was not the case in 2007, teams who sustained
8 three injuries during this season conceded an
§ s average of 43 points per 30 minutes of football when
£ only one player was available on the interchange
s {\ bench.

gzs—

2 The general trend in 2010 was that injuries did not

20 adversely affect the number points conceded for the
No Injuries One Injury Two Ijuries Threo Injuries remainder of the match, however as stated, teams
Number of Injuries were scoring fewer points after sustaining injuries,
Figure 3. Average points conceded for the 2007-  and thus the net result remains negative.
2010 AFL seasons for teams with no injuries and
one, two and three injuries. Table 4 presents data on the average points

conceded after sustaining one, two or three injuries,
Sustaining one injury had only minor detrimental ~ when compared with teams who did not sustain any
effects on points conceded during 2007 and 2009,  injuries for the duration of matches.
and of note, teams conceded slightly fewer points

Quarterly Points Quarterly Points Conceded When Compared With Matches
Conceded When Where No Injury Was Sustained
Season -
No Injury Was

Sustained One Injury Two Injuries Three Injuries
2007 23.95 +0.16 -3.52 +19.95
2008 24.06 +2.08 +4.04 +2.64
2009 22.14 +0.95 +4.51 +10.56
2010 22.21 -1.26 +1.61 +0.74
2007 — 2010 23.95 +0.24 +1.30 +8.22

Table 4. Tabulated points conceded for the 2007-2010 AFL seasons comparing points conceded for teams with
no injuries and teams with one, two and three injuries.
complement of players to rotate through the
Results in Table 4 indicate sustaining one injury had interchange bench. This finding was most
a minor impact on points conceded, with points salientduring 2007 and 2009. It should be noted that
conceded fluctuating by between 1 and 2 points per the variability in points conceded following three
quarterduring 2007, 2009, and 2010 after one injury injuries may be the result of sample size, given that
was sustained.Sustaining two injuries had the teams infrequently sustain three injuries in the one
greatest effect on points conceded over the past three match.
seasons, particularly during 2008 and 2009, with
four additional points being conceded for every 30 When considering all four seasons combined, results
minutes of football. indicated that having one injury was associated with
conceding the same number of points per quarter,
Over the past four seasons, when three injuries were two injuries resulted in conceding 1 point more per
sustained, AFL teams conceded considerably more quarter, three injuries resulted in conceding 7 points
points when compared with teams who had a full more per quarter, and four injuries resulted in
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conceding 16 points more per quarter. It should be
noted that four injuries occurred on one occasion
only.

Overall Scoring Differential

Based on the analysis of scoring rate and points
conceded, a final analysis was conducted to examine
the overall scoring differential when teams sustained
one, two or three injuries. Scoring differential can be
calculated by subtracting points conceded from
points scored, and thus a positive score indicates that
the team with injuries has scored more than their
opponent whilst a negative score indicates that the
team with injuries has scored less than their
opponent. Figure 4 displays the average score
differential for matches where one, two or three
injuries were sustained.

~= 2007
~ 2008

2009
~= 2010

Average Scoring Differential

-30

One :njury Two Irl\juries Three ;njuries
Number of Injuries

Figure 4. Scoring differential for the 2007-2010

AFL seasons for teams with one, two and three

injuries.

Results displayed in Figure 4 indicate that teams
who sustain one injury maintained an overall
scoringdifferential of approximately zero in 2007,
2009, and 2010, however teams conceded four
points more than they scored each quarter during
2008.

In 2009 and 2010, sustaining two injuries resulted in
a net loss of between 4 and 5 points each quarter
respectively, which equates to a total of 16 to 20
points of the course of the game. When teams
sustained three injuries in 2009 and 2010, the net
score differential was between 11 and 15 points, thus
teams were much more likely to concede
considerably more points than were scored for each
quarter that was played with three injured players on
the interchange bench. Whether this finding has

—
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resulted from the increase in player rotations and
subsequent elevations in game speed and intensity
warrants further research.

5+

Average Scoring Differential

-20

T T T
1 2 3 4

Quarter that the Injury Occurred
Figure 5. Average scoring differential for the 2007-
2010 AFL seasons for injuries sustained in the first,
second, third and fourth quarters.

Figure 5 displays the average score differential for
injuries sustained in the first, second, third and
fourth quarters. This analysis examines the
difference between points for and score concededfor
teams who sustained an injury in the 2007, 2008,
2009, or 2010 seasons.Results in Figure 5 indicate
that the scoring pattern of teams (relative to their
opposition’s scoring) is not impeded by an injury
that occurs in the first or second quarters. However,
when an injury occurs in the third quarter, teams
have a 2 point deficit (on average) for each quarter
for the remainder of the match. In addition, when an
injury occurs in the fourth quarter, teams on average,
have a 10 point scoring differential, which indicates
that they concede 10 points more than they score if
the injury is sustained at the beginning of the final
quarter. If the injury is sustained at the 15 minute
mark of the final, the results in Figure 5 suggest that
this will result in a five point deficit by the end of
the match.

Likelihood of Winning the Match

In addition to the examination of the effect that in-
game injuries have on scoring patterns, an aim of
this analysis was to examine the ability of teams to
win after sustaining one, two or three injuries in a
match. Table 5 presents the percentage of matches
won by teams who had one, two or three injuries
during a match in the 2007 to 2010 AFL seasons.
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Percentage of Matches Won By Team
with Players Injured

Season
One Two Three
Injury Injuries Injuries
2007 49.0% 62.5% 2
2008 47.8% 37.5% 2
2009 45.5% 30.0% 2
2010 46.4% 41.7% 2
2007-2010 46.9% 42.1% 25.0%

% Insufficient data to compute a win percentage.
Table 5. Percentage of matches won by teams who
had one, two or three injuries during a match in the
2007-2010 AFL seasons.

Results in Table 5 indicate that when a single injury
was sustained during the match, the likelihood of
winning during the 2007 to 2010 seasons was less
than 50%, and at times as low as 45%. This value
was lowest during the 2009 and 2010 seasons
respectively, which may be indicative of the increase
in player rotations evident in these two seasons.
Findings for 2010 provide furtherevidence of this
contention, given that teams who sustained two
injuries won only 41.7% of matches, whilst no team
won a match after sustaining three injuries during a
match in 2010. With the exception of the 2007
season, sustaining two injuries within a match
resulted in a considerable decrease in win
percentage, with teams only winning 30% of
matches during 2009 when two injuries were
sustained.

50

& 3 &
{ T {

Win Percentage (%)

8

257

One :njury Two Irl1juries Three Ilnjuries
Number of Injuries

Figure 6. Percentage of matches won by teams who

had one, two or three injuries during a match in the

2007-2010 AFL seasons.

Figure 6 presents data on all four seasons from 2007
to 2010 combined. A combined analysis was
undertaken due to the small sample size of matches
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where three injuries occurred. This analysis provides
some insight into the effect of multiple injuries on
the outcome of matches. When considering all four
seasons combined, between 2007 and 2010, teams
with one injury won 47% of their matches, teams
with two injuries won 42%, teams with three injuries
won 25%, and teams with four injuries did not win a
match between 2007 and 2010 when their opposition
team had 22 available players throughout the match.
An examination of the likelihood of winning a
match when an injury was sustained in the first,
second, third or fourth quarter was also undertaken.
This analysis incorporated those matches where only
one player was injured over the course of the game.
Findings revealed only minor variations in the
likelihood of winning, irrespective of the quarter of
the injury, or the season that was analysed (e.g.,
2007, 2008, 2009, or, 2010). When considering all
four seasons combined, the likelihood of winning
was lowest (38%) when an injury was sustained in
the third quarter.

4. DISCUSSION

Analysis showed sustaining multiple injuries
resulted in a general decline in a team’s ability to
score when compared with teams who had not
sustained injuries.In 2010, having one injury
resulted in scoring 1 point less per quarter, two
injuries resulted in scoring 5 points less per quarter,
and three injuries resulted in scoring 16 points less
per quarter. The effects of injuries in 2010 were
markedly greater than in previous seasons.

Over the past four seasons, player injuries have had
a substantial impact on the capacity of teams to
rotate their players. The steepest decline in
interchange rotations was evident during 2010.The
impediment that one injury placed on interchange
rotations in 2010 is double that of 2008 and 2009,
and 13 times that observed in 2007.

Sustaining one injury had only minor detrimental
effects on points conceded during 2007 and 2009,
and of note, teams conceded slightly less points after
sustaining one injury in 2007 and 2010.Sustaining
two injuries had the greatest effect on points
conceded over the past three seasons, particularly
during 2008 and 2009, with four additional points
being conceded for every 30 minutes of football. The
general trend in 2010 was that injuries did not
adversely affect the number of points conceded for
the remainder of the match, however as stated, teams
were scoring fewer points after sustaining injuries,
and thus the net result remained negative.
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In 2009 and 2010, sustaining two injuries resulted in
a net loss of between 4 and 5 points each quarter
respectively, which equates to a total of 16 to 20
points over the course of the game.The scoring
pattern of teams is not impeded by an injury that
occurs in the first or second quarters. However,
when an injury occurs in the third quarter, teams
have a 2 point deficit (on average) for each quarter
for the remainder of the match. In addition, when an
injury occurs in the fourth quarter, teams on average,
have a 10 point deficit, which in practice, indicates
that they concede ten points more than they score if
the injury is sustained at the beginning of the final
quarter.

When a single injury was sustained during the
match, the likelihood of winning during the 2007 to
2010 seasons was less than 50%, and at times as low
as 45%. This value was lowest during the 2009 and
2010 seasons respectively, which may be indicative
of the increase in player rotations that has been
evident in these two seasons.

The results of these analyses do not counteract
intuition, that is, it is expected sustaining injuries
would be detrimental to team performance, and this
research bears evidence in favour of this contention.
It is interesting however that the effect worsens, in
scoring terms, the later in the match the injury
occurs. Such a finding suggests teams are able to
better manage injuries early in a match by perhaps
modifying their game plan. Also of interest is the
finding that detrimental effects impact on points
conceded more than points scored. This suggests the
defensive component of a team’s game plan is
hindered to a greater degree by injury than the
offensive component.

Limitations

Several limitations exist in the current analysis.
Firstly, it was only possible to examine matches
where only one team sustained one or more injuries.
Whilst an analysis of matches where both teams
sustained injuries may yield some fruitful
information, the inclusion of this data would likely
increase ambiguity in the current findings.

A second limitation that should be noted is the
limited sample size that was available for certain
injury categories, particularly matches where a team
had sustained three or four injuries. Given that teams
seldom suffer three or four injuries in the one match,
the sample size for these categories was limited. In
each analysis, every effort was made to avoid
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misinterpreting the data, and therefore, an analysis
was not undertaken when an insufficient sample size
was available.

5.CONCLUSION

Based on the findings of this analysis, it can be
concluded that sustaining one or more injuries
during a match has a substantial impact on a team’s
ability to score and rotate players on and off the
interchange bench. This was particularly evident in
2010, with a marked decrease in both scoring
potential and player rotations when injuries were
sustained. Of note, single injuries did not increase
the number of points conceded, however multiple
injuries resulted in a slightly higher number of
points being conceded each quarter. Overall,
sustaining injuries impacts on the likelihood of
winning the match, with two injuries resulting in a
win percentage of approximately 40%.

Based on these findings, it is evident that injuries
have had a greater impact on scoring potential and
player rotations during 2010 when compared with
previous seasons. Whilst a progressive increase in
the effect of injuries on scoring patterns and match
outcome is evident, it is clear that interchange
rotations reached a critical mass in 2010, and thus
corresponding rotation rates cannot sustain a single
injury during the match.
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Abstract

The simplest, and most common, measures of individual performance in limited overs cricket are the batting and
bowling average. Along with strike rates and economy rates, which are equally easy to construct, they form the
traditional framework around which a cricketer’s assessment is based. However, it is well known that these
measures, while easy to calculate, can be misleading with regard to the true value of an individual to his team’s
success or failure. In this paper, we extend the work of Lewis (2005) to develop a measure of the actual relative
contribution of each batsman and bowler to the final scores in a limited overs match. By so doing, we can
develop better metrics of performance which avoid many of the pitfalls of the standard measures. Based on a
new performance metric, the adjusted net runs attributable (aNRA), we rank the best performers in both batting
and bowling overthe Indian Premier League seasons from 2010 to 2013 and examine the relationship between
aNRA and the official Man of the Match (MotM) awards. In addition, we use the new metric to assess the
outcomes of the 2014 player auction, wherein teams bid for the services of the players for upcoming seasons.

Keywords: Duckworth-Lewis method; Performance metrics; Player rankings

as many runs as they can, using their available
1. INTRODUCTION resources (i.e., deliveries and wickets). Then, in the

second innings the other team attempts to score more
Assessing individual performers in team sporting  than their opponent. As in many sporting contests, it
arenas is a fundamental activity of both fans and s often the case that a limited overs cricket match's
administrators alike. Typically such assessments are outcome is clear well before it concludes. For a
largely subjective or else based on objective  cricketer, then, when runs are scored or wickets
measurements which owe their prominence to their taken, and the circumstances of the match under
ready availability and simplicity of calculation, but  which these events occur, are at least as important as
may not be the most directly applicable measures  their mere number in assessing their contributions to
with respect to the most important aspect of an  the team cause. Indeed, it has long been accepted
individual's performance; namely, their contribution that the Simp|e, and most common, measures of
to the success of the team. In the case of cricketers, performance, the batting and bowling averages, are
as for many other individual sportspersons in team  often a misleading indicator of a player’s true ability
sports, the most common and traditional objective  and worth. Perhaps more insidiously, use of simple
measures of performance, such as averages and  averages as a key performance indicator may actually
aggregates, strike rates and economy, are used largely  encourage players to undertake strategies which
due to their ease of construction and Ubiquitousness. prioritise persona| statistics over team goa|sl AS one
However, these statistics do not directly measure a example, a batsman may choose to accumulate runs
player's contribution to the most important aspectof a  sjowly (and safely) to pad his personal tally at the
match, its outcome.  Players may accumulate  expense of under-utilising the team’s finite available
impressive statistical performances in lost causes or resources and thus not leaving his team enough to
easy victories, while others may have their match-  actually win the match. Further, the importance of
changing, though not voluminous in terms of the  «not outs” in batting average calculations provides
usual measures, performances under-valued. As in  strong incentive for batters to preserve their own
anything, the output of a participant needs to be  icket at the expense of seeking risky runs which
judged in proper context. might more directly benefit the team cause.

A limited overs cricket match proceeds in two A range of researchers have attempted to better
innings, each continuing until either the completion  account for the true performance of cricketers by
of a prescribed number of deliveries, the loss of 10 ysing statistical measures beyond the ones in most
wickets or, in the case of the second innings, the  common usage; namely batting averages and strike
game is won. The first innings sees one team score  rates (runs per delivery) for batsmen and bowling
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averages and economy rates (runs conceded per over
bowled) for bowlers. For example, Croucher (2000)
introduced the “batting index” metric, which is the
product of a batsman’s average and strike rate.
Alternatively, the average plus strike rate (per 100
deliveries), or APS, is becoming a frequently quoted
measure of batsman’s capabilities, particularly in the
shortest version of the game, Twenty20 cricket.
Other approaches include detailed multivariate
analysis of scorecards (e.g.,Barr and Kantor, 2004).
These approaches, though,use only aggregate match
information (i.e., how many runs were scored or
wickets taken, but not when during the match they
occurred). Indeed, the official International Cricket
Council (ICC)player ranking methodology, while
calculated using  “a  sophisticated  moving
average...based on various circumstances of the
match,”(http://www.reliancemobileiccrankings.com/)
, uses solely information available on a match
scorecard. While such approaches have the benefit
of ease of implementation, as no detailed
(and,typically, difficult to obtain) information is
needed, they, like the simple averages they replace,
tend to ignore crucial contextual information
contained in the timing of when runs are scored or
wickets taken.

One reason no early attempts were made to add
match context to performance metrics was that, until
recently, there was no definitive quantitative measure
of “match situation” to incorporate. An early attempt
to assess the net contribution of individual players
using contextual information was investigated by
Johnston et al. (1993) employing a dynamic
programming approach to assessing expected versus
observed outcomes on individual deliveries.
However, with the development of the Duckworth-
Lewis (D/L) methodology (Duckworth and Lewis
1998, 2004), which determines the relative
importance of each ball bowled in a limited overs
cricket match by calculating the proportion of the
final total score which would have been expected to
be scored, given the match situation at the time (i.e.,
how many balls remain in the innings and how many
wickets have already been lost). A number of
authors (for instance, Clarke and Allsop, 1993; de
Silva et al, 2001; and, Stern, 2008) used the D/L-
defined notion of “scoring resources” in assessing
match outcomes (margin of victory and team
performance ranks). In addition, Beaudoin and
Swartz (2003) defineda player’sRuns per Match
(though perhaps a more accurate name would beRuns
per Resources Utilised) as a potential replacementfor
the common averages.

To better account for the true value of runs scored
and conceded, Lewis (2005) suggests that player
performance in a match is sensibly calibrated using a
measure of the net runs attributable (NRA) to them.
While we leave the details of the calculations to the
following sections, we note that the underlying
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philosophy of this approach is to assess not only the
number of runs scored or conceded, but to also
contextualise their importance. For instance, a batter
who scores a large number of runs, but does so
slowly and utilising excessive resources, will find
that his NRA is far lower than his actual run total,
and may even be negative.

As such, Lewis (2005) suggests the contribution of
any player can be assessed by comparing their actual
output with what would have been expected to occur
during the period of the match to which they
contributed. In this paper, we continue this train of
development by extending the idea of a player's NRA
in any given match to include an assessment of not
just the timing of their performance but also the
relative quality of the opposition they faced. To do
so, we proceed by using the fundamental construct of
determining what would have been expected to
happen had the player being evaluated been absent
from the match and instead been replaced by a player
with an “average” contribution. In this respect, our
newly proposed adjusted NRA (aNRA) for cricketers
is akin to the concepts which have become staples of
the famous “sabermetrics” movement in American
Major League Baseball (popularised in the famous
book Moneyball by Michael Lewis).

2. NET RUNS ATTRIBUTABLE

Lewis (2005) suggested that a batsman’s or bowler’s
net contribution to his side could be calculated by
assessing how many runs he actually scored or
conceded, respectively, in relation to the number of
runs he would have been expected to score or
concede given the proportion of his team’s resources
he utilised. For example, if a batsman accumulated a
large personal score, but in order to do so utilised an
excessive amount of his team’s available resources,
then his contribution would be appropriately down-
weighted. Further, this gives a method to assess the
true contribution of batsmen at different spots in the
order, since early batsmen must weigh the risks of
losing wickets differently than those batting at the
end of the innings.

2.1. Lewis’ Net Runs Attributable for Batsman

Specifically, Lewis (2005) suggested that the net runs
attributable (NRA) to the ith batsman in a given side
for a given match should be defined as:

No= ) (-2

keK;
whereK; is the set of indices of balls faced by
batsman i, o is the number of runs scored by the
batsman (i.e., excluding extras) on the kth ball and &
is the expected number of runs scored on the kth ball.
To determine g, Lewis (2005) suggested employing
the Duckworth-Lewis (D/L) methodology, so that &
= Gsopx, Where p is the D/L resources associated
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with the kth ball and Gs is the global average score
for 50-over matches of the appropriate level (e.g., for
men’s international matches at present Gsy = 245).

While this approach definition provides stability and
makes sense over the long-run, we note that the value
of Gso has gradually increased over the years, which
means that recent player ratings would not be directly
comparable to historic ones. Moreover, using the
global average value of Gso will mean that player
performances will not be calibrated to the match-
specific conditions which, in the short to medium
term, will mean, for instance, that batsmen who tend
to play on batting-friendly pitches will have their
assessment  measures  overstate their  actual
performance when compared to batsmen who tend to
play on bowling-friendly pitches.

Instead, then, we might choose to define g = Upy
where U is a match-specific resource utilisation rate
based on the observed scoring rate in the specific
match in which the players' performances took place.
There are several possible choices for U. We might
use the innings-specific utilisation rate associated
with the innings in which batsman i participated, so
that U = S/R where S is the final score (of runs off the
bat) of the innings in which the player being
evaluated participated and R is the total resources
available in that innings (e.g., a full 50-over innings
would have R = 1, meaning U = S). Doing so,
however, will tend to damp performances, since a
large innings score will translate into a large base
utilisation rate and thus mean that individual
performances gauged against this baseline will not
appear as impressive as they actually were.

As an alternative, we can define an overall match-

specific utilisation rate, so that
S1+S;

T Ri+R, (1)
whereS; and S, are the total runs scored off the bat in
the first and second innings, respectively, and R, and
R, are the associated total innings resources. In this
way, we use all available match-specific information
to assess the appropriate baseline for comparison,
meaning that if one innings score is much larger than
the other, the batsmen who scored those runs will get
appropriate credit (and the bowlers of the opposition
will also be adequately held accountable).

Even using the overall match scoring rate (1), though,
has an issue. Specifically, if we are to assess the
performance of a player accurately, we should assess
their performance against an expected rate calculated
from the observed performace in the match with their
own contribution removed. Otherwise, an extremely
good (or bad) performance will noticeably affect the
overall match-specific resource utilisation rate and
make individual performances seem less pronounced
than they actually were. Thus, we define the adjusted
baseline resource utilisation rate for the ith batsman:
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_ S1+S52-5;
L7 Ry+Ry—1i (2)

wheres; = Yxex, 0k and 1; = Yyex, Pk represent the
runs scored and the resources used by batsman I,
respectively. Using (2), we then set the net runs
attributable to batsman ias:

N; = Yek,(ox — Uipy).

2.2. Net Runs Attributable for Bowlers

The calculation of the corresponding performance
measure for the jth bowler follows essentially
identical lines, but must take account of the fact that
wides and no balls are counted against a bowler.
Also, more runs means a worse performance for a
bowler as opposed to a better one. So we define our
measure as a subtraction of expectation minus
observation, as opposed to the reverse as we did for
batsmen. As a result, the net runs attributable to a
bowler should be interpreted as the net runs he was
able to prevent when compared to the average rate of
runs conceded by the other bowlers in the match.

Thus, the net runs attributable to bowler j is:

M; = Z(ek—ok)+Z(V,-pk—wk)=m,-+V,-r,-—w,-
keL; keEL;

where L is the set of indices of balls bowled by

bowler j, ax is the number of wides and no balls

tallied on the kth ball, w; = Lker; Wk is the total

number of wides and no balls delivered by bowler j,
1 = Lker; Pk is the resources associated with the
deliveries of bowler j, m; = Xye, (e, — 0y) is the net
runs off the bat attributable to the bowler (a quantity
we shall find useful in the next section), e, =
Ujrypiis the expected runs off the bat for ball k, the
function j(k) represents the index number of the
bowler who delivered ball k, and we define the
baseline rates of runs scored off the bat and runs from

no balls and wides relevant for bowler j as
S51+S,—-m; Wi+Wo—w;

whereW; and W, are the total wides and no balls

bowled in the first and second innings, respectively.

2.3. Opponent-Adjusted Net Runs Attributable

The net runs attributable is a major advancement on
the more commonly used performance measures such
as batting and bowling averages and strike or
economy rates. However, NRA does not adjust
directly for the ability of the individual opponents
faced (they do, of course, account for the overall
ability of the opponents as a team, but not for the
individual fluctuations of ability within the opponent
team). Clearly, if a batsman faces most of his
deliveries from the opponent's best bowler, then his
net contribution will be expected to be lower than it
would have been had he faced the lesser bowlers.

To account for this, we can compare a player’s runs
scored or conceded not to a “match averaged”

—t



expectation, but to an adjusted version which
accounts for which opponents were faced. In
particular, we can define adjusted versions of N; and
M; by augmenting the expected runs values, &cand
€, With an adjustment factor to account for the
match performance of the opponent faced on that
delivery. Specifically, we will define the adjusted
net runs attributable (aNRA) to a batsman as:
M = Ni +a
JEJ; kEK;NL;j

M}k
= {on — (Uit — am)m;, }

JEJ; kEKNL;j

whereJ; is the set of indices of bowlers faced by
batsman i, « is a tuning parameter (set to 0.01 in
what follows, though further work is needed to assess
an optimal value) and 7z = pJr; is the proportion of
the resources associated with the jth bowler's
deliveries that the kth ball comprises.

Similarly

M; = M; + az:
i€l KEK;NL;
= > W+ %) - Ny — (o + wp)]
i€l kEK;NL;

wherel; is the set of indices of batsmen that bowler j
faced and wy = pdr; is the proportion of the
resources associated with the ith batsmen's deliveries
that the kth ball comprises.

Niwy

This adjustment allows for opponent performance by
simply replacing the average expectation for any
given ball by an amount which is modified according
to the average performance (within the match) of the
specific opponent. For instance, for a batsman's
calculation we compare their ball-by-ball scores, o,
to an expected outcome which comprises the overall
average expection, &, modified by a proportion of
the resource-weighted average amount of net runs
attributable to that ball for the opposing bowler,
though we are careful in this case to adjust according
to mj, the actual runs off the bat attributable to bowler
j and not M;, as a batsman's performance does not
include wides and no balls. Also, note that the use of
the proportionality constant, «, allows for this
process to be both iterated and damped so that the
adjustment does not become “circular”.

3. USES OF NET RUNS ATTRIBUTABLE

Using ball-by-ball data compiled from commentary
of all completed IPL matches between 2010 and
2013, we now examine the top performers in terms of
aNRA. In particular, we examine both average
performances across matches played, as well as
individual performances within single matches. The
former investigation allows us to assess the overall
rating and ability of players, smoothing out the
vagaries of performances within individual matches.
The latter investigation, however, indicates which
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players most contributed to their team’s performance
on the day. As will be discussed, such individual
match investigations will allow us to determine the
extent to which a player’s performance in a given
match had a direct influence on its final outcome.

3.1 Player rating and ranking

Table 1 shows the top 20 average aNRA values for
batsmen and bowlers who contributed (i.e., actually
did bat or bowl, as opposed to just being in the side)
in at least 10 matches over the entire period. In
addition, each batsman’s average and strike rate (runs
per 100 deliveries faced) is included and each
bowler’s average and economy rate (runs conceded
per over bowled) along with the rank of each of these
values among the 125 batsman and 106 bowlers who
played in the IPL between 2010 and 2013 and
contributed statistically to at least 10 matches.

For those who follow cricket, most of the names in
Table 1 are both familiar and not unexpected, as they
are also the players who top lists of the more
conventional statistical measures. Indeed, 7 of the 10
highest batting averages and 9 of the 10 lowest
bowling averages belong to players in Table 1, as do
7 of the 10 highest batting strike rates and 9 of the 10
lowest bowling economy rates. It is no surprise,
then, that the Pearson and Spearman correlations
between average aNRA and the more commonly
used statistics are reasonably high, as Table 2 shows
(note that the correlation values are negative for the
bowling statistics since for the usual measures lower
values indicate better performance, while aNRA has
been defined so that larger values indicate better
performance for both batsman and bowlers).

Nevertheless, there are some interesting omissions
and inclusions in Table 1. As a notable example,
Sachin Tendulkar, perhaps the most accomplished
batsman of his generation, does not appear. In part,
this may be attributed to the fact that he is reaching
the end of a long career. However, there are also
suggestions that, while he has scored numerous runs
(over the four seasons, Tendulkar scored 1,782 runs
at an average of 35.64, which ranked 10th), he often
does so at a rate which is potentially detrimental to
his team. Of course, care must be taken in making
such an interpretation, but it is interesting that despite
his very high batting average, Sachin’s average
aNRA for the 4 seasons under study is only 1.70.

Other notable bastman missing from Table 1 are
Michael Hussey, whose batting average of 42.31 was
the fourth highest but his performances only
translated to an average aNRA of 1.18 (36th ranked);
and ViratKohli, an up and coming Indian player
whose batting average of 37.24 was 8th highest but
whose average aNRA of —0.26 was only ranked 66th.
Furthermore, neither Kumar Sangakkara,
MahelaJayawardene nor Rahul Dravid are among the
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top 20, despite each having very high batting
averages and aggregate runs totals during the period.

nearly 3 runs per match as measured by aNRA but
has only the 43rd highest batting average at 25.83,

Table 1: Top 20 IPL Batting and Bowling Performers by average aNRA between 2010 and 2013

On the bowling side there are notable omissions as
well, including Zaheer Kahn (though he is ranked
25th), the brothers Morne and AlbieMorkel (ranked
41st and 71st, respectively) and Dwayne Bravo
(ranked 50th). Another key name which does not
appear in Table 1 is Jacques Kallis, widely regarded
as one of the best all-rounders of his generation: in 90
IPL matches between 2008 and 2013 he score 2,276
runs (6th most all time as of the close of 2013) and
took 61 wickets (18th most all time, again as of the
close of 2013). Nevertheless, many critics have been
of the view that his batting style is not suited to the
requirements of Twenty20 cricket. His aNRA tends
to support this view (over the 2010-3 period, his
batting aNRA was —2.41 which ranked 110th among
those with at least 10 innings during that timeframe).
By contrast, the current all-rounder seen as on a par
with Kallis, Shane Watson, appears in Table 1 on the
batting side and his bowling aNRA is ranked 29th.
Interestingly, critics of Watson have proferred views
that his batting style is not suited to the traditional
longer form of the game (and a basic comparison of
Test career statistics for Kallis and Watson clearly
support this position).

Of equal interest to the omissions, some of the
inclusions in Table 1 show that having a high batting
average or low bowling average is not necessary to
make an important contribution to the team score.
For instance, Kieron Pollard adds an average of

—

30

Batsmen Bowlers
Batting Bowling | Economy
Average Average Strike Rate Average Average Rate
Player aNRA (rank) (rank) Player aNRA (rank) (rank)
1. CH Gayle 1189 | 55.74(2) | 164.28 (1) | 1. SP Narine 9.36 14.65 (2) | 5.47 (1)
2. SR Watson 8.26 3751 (7) |143.50 (11) | 2. MM Sharma 6.29 16.30 (5) | 6.43(7)
3. KP Pietersen 753 60.11 (1) | 148,63 (5) | 3. A Kumble 6.06 2394 (28) | 6.43(6)
4.V Sehwag 6.74 30.19 (27) | 157.31 (3) | 4. R Rampaul 5.98 20.08 (10) | 6.93 (20)
5. DA Miller 5.67 51.60 (3) | 156.84 (4) | 5. DL Vettori 5.84 | 33.84(74) | 654(8)
6. G Gambhir 5.15 31.75 (22) |128.18 (42) | 6. A Chandila 5.74 22.00 (20) | 6.21(2)
7. MS Dhoni 481 36.51 (9) | 147.05 (8) | 7. JP Faulkner 5.54 15.88 (3) | 6.94 (21)
8. RN ten Doeschate 454 | 30.43(26) |135.67 (18) | 8. DW Steyn 5.26 20.82 (12) | 6.27(3)
9. S Sohal 3.74 24.90 (50) |130.37 (32) | 9. R Ashwin 5.07 24.23 (30) | 6.40 (5)
10. SK Raina 330 | 3540 (11) |141.19 (15)[10. SL Malinga 456 18.08 (6) | 6.60 (10)
11. KA Pollard 2.85 25.83 (43) | 147.08 (7) | 11. M Muralitharan 3.69 25.91 (36) | 6.98 (23)
12. SPD Smith 2.74 40.08 (5) | 130.58 (30) | 12. RE van der Merwe 3.69 20.83 (13) | 6.28 (4)
13. STR Binny 256 | 2853 (34) |141.72 (13)|13.GB Hogg 3.67 28.40 (51) | 7.22(32)
14. YK Pathan 2.50 26.56 (41) |140.81 (16) | 14. S Nadeem 3.48 34.24 (76) | 6.66 (12)
15. RG Sharma 2.46 32.96 (20) | 129.41 (36) | 15. MG Johnson 2.76 19.13 (8) | 7.17 (28)
16. DA Warner 245 29.58 (29) | 134.46 (21) | 16. DE Bollinger 2.74 18.73 (7) 7.22 (31)
17. SE Marsh 2.28 37.85(6) | 130.40 (31) | 17. SK Warne 2.69 28.25 (49) | 6.99 (24)
18. RV Uthappa 2.21 27.87 (36) |129.45 (35) | 18. Shakib Al Hasan 2.59 16.09 (4) | 6.67 (13)
19. Harbhajan Singh 2.09 19.64 (84) | 147.44 (6) | 19. B Hodge 2.54 14.20 (1) | 7.47 (39)
20. RA Jadeja 205 | 23.28(59) |131.32(26)20.B Kumar 2.38 29.96 (58) | 6.71 (15)
Table 2: Correlations between aNRA and Common Measures and Harbhajan Singh, primarily a bowler, makes the
_Batsmen (n = 125) __Bowlers (n = 106) top 20 list as a batsman despite his batting average of
S;:;?:g Pearson | Spearman ;ﬁf\;ﬁ?\; Pearson | _Spearman only 19.64. In addition, Brad Hodge, primarily a
Average 0.665 | 0.606 Average -0.431 | -0.564 batsman and only a part-time spin bpwling option
stike | 020 | g0 |ESOOMY [ ooce | 068 adds over 2.5 runs per match according to aNRA,
Rate Rate despite his high economy rate of nearly 7.5 runs per

over (ranked 39th). In part, this may be explained by
batsmen taking unwarranted risks off his bowling as
he is not a top-line bowler and this view is only
enhanced by noting that Hodge’s bowling average of
14.20 is the lowest among all 106 bowlers with at
least 10 bowling performances.

Overall, the pattern of included and excluded players
suggests that aNRA rewards players who contribute
quality not quantity. In addition, it recognises that
being not out, for batsman, is not necessarily of huge
importance, unlike the case for batting averages,
where lower order batsman often gain the benefit of
increased batting averages due to a large proportion
of not out innings. Similarly, aNRA recognises that
taking wickets is only directly important insofar as it
helps keep scoring rates down. Thus, taking wickets
late in matches, when batsmen are playing in a high
risk manner in search of quick runs, will aid the
bowling average greatly, but not the average aNRA.
Of course, none of these observations directly
validate or invalidateaverage aNRA as a rating
measure. However, the underlying D/L structure
gives aNRA a solid foundation. Moreover, we note
that a recent ad hoc measure that has been proposed
for batsmen is the so-called APS (average plus strike
rate) and Figure 1 displays the relationship between
this statistic and the average aNRA for the 125
batsmen who had at least 10 innings during the four
IPL seasons between 2010 and 2013.
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The correlation between average aNRA and APS is

0.8, higher than for either batting average or strike
Figure 1: average aNRA versus Batting Average plus Strike
Rate (APS) for 125 IPL Batsmen
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rate individually (see Table 2), and gives a degree of
external validation for aNRA as a rating tool for
batsmen, given that APS is generally agreed by
experts to give a good generic assessment of a
batsman’s capabilities in the Twenty20 format. The
benefit of aNRA over APS lies in its methodological
underpinnings, avoiding the somewhat arbitrary
simple summation of the two basic statistical
measures of batting performance. For example, there
is no solid rationale as to why the two statistics are
equally weighted in the APS combination.

To further examine the alignment of aNRA values
and “expert” opinion, we now investigate aNRA
values from individual matches.

3.2. Man of the Match Award calculations

The worth of individual performances can be
measured in many ways; however, we focus here on
the player(s) with the highest aNRA in the match.
Doing so immediately raises the question of
comparison of batting and bowling aNRA values.
Given that each are ostensibly measured in terms of
runs attributed to an individual, it seems reasonable
(and indeed is a strength of the metric itself) that
simple additive combination of batting and bowling
values gives a sensible measure of the overall
contribution of an individual player to a single match
(of course, it does not measure contributions made
via the third major discipline of the game; namely
fielding). We refer to this value as the combined
aNRA, or cNRA.

Assessing the reasonableness of this combined aNRA
as a measure of performance, we examine the
frequency with which players with high combined
aNRA are deemed to be the “Man of the Match
(MoM)”, an award given in each game played by a
pre-determined (though often different for each
match) panel of “expert” assessors. Table 3 gives a
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Man of the Match awardee had: (n = 282)
Cumulati
ve
Percenta
Criteria Count ge
Highest combined aNRA in match 147 52.1%
or Highest combined aNRA on winning 163 57.8%
side
or Highest individual aNRA in match 167 59.2%
or Highest batting aNRA value in match 186 66.0%
or Highest bowling aNRA value in 202 71.6%
match
or Highest individual aNRA on winning 205 72.7%
side
or Highest batting aNRA value on 211 74.8%
winning side
or Highest bowling aNRA value on 218 77.3%
winning side
or Combined aNRA among top 3 in 237 84.0%
match

breakdown of the correspondence between players
with the high combined aNRA and the MoM award.

Table 3: Man of the Match Awards in IPL 2010 to 2013

So, in just over half the matches, the winner of the
MoM award also had the highest combined aNRA of
any player in the match. Further, in nearly 60% of
the matches, the MoM award went to the player with
either the highest combined aNRA overall or else the
highest combined aNRA on the winning side, where
MoM awardees come from well over 95% of the time
(of the 282 IPL matches completed between 2010
and 2013, only 7 MoM awardees played on the losing
side). If we broaden our scope, Table 3 indicates that
over three-quarters of MoM award winners had either
the highest combined aNRA value or the highest
individual aNRA value in one discipline (perhaps
restricted to scores from the winning side). Given
this, we conclude that the aNRA metric is reasonably
well in line with what experts deem to be the “best”
performance of the match. Indeed, as Table 3 further
shows, when we include combined aNRA values in
the top 3 for each match, we capture 84% of all MoM
award winners.

While the degree of matching between high aNRA
values and MoM award winners gives some degree
of validity to the use of aNRA as an appropriate
rating metric, it is equally instructive to investigate
the remaining 45 (16%) matches in which the MoM
award winner did not have one of higher aNRA
values. Table 4 breaks down these 45 matches
according to some simple criteria.

Table 4: Breakdown of Man of the Match with low aNRA

Man of the Match awardee with low aNRA had: (n = 45)
Criteria Count |Percentage
Highest individual score in match 16 35.6%
Highest individual score on winning side 9 20.0%
Highest wicket tally in match 12 26.7%
Highest wicket tally on winning side 2 4.4%
TOTAL: 39 86.7%

This casts the correspondence of Table 3 in a
somewhat different light, as we see the expert panel
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assessment skews toward the traditional metrics of
quantity of runs and/or wickets (indeed, in 2 of the 6
matches not covered in Table 4, the MoM winner had
what would typically be deemed to be the best
“quantitative all-round” performance in terms of
combined runs scored and wickets taken). While
high aNRA values will frequently align with the best
“quantitative” performances (which explains the high
correspondence in Table 3), the underlying focus of
aNRA is quality instead of quantity, and explains the
discrepancy in the matches investigated in Table 4.
Just finally, though, it should be pointed out that in 2
of the 6 matches not covered by the criteria in Table
4, the MoM winner’s performance fell in to the
category of “match winner”; that is, a performance
which was not quantitatively the largest, but was
clearly key in taking the match position from a
potentially losing one to a winning one (e.g., in one
such instance, eventual MoM winner DR Smith,
having scored just 10 runs from the 6 deliveries he
had faced and needing 14 runs for victory from the 3
remaining deliveries, a seemingly hopeless position,
proceeded hit a six and two boundaries to grasp
victory from the jaws of defeat, though not
accumulating many net runs attributable).

3.3. Player salaries

Finally, we investigate the relationship between
cNRA and the 2014 salary of players. It should be
noted that the 2014 salary of players is determined in
two possible ways. Players whose contracts are not
complete may be “retained” by their current club at
their previous salaries. Otherwise, the remaining
players (i.e., players either not retained or out of
contract) have their salaries determined at auction.

Figure 2 shows the relationship between 2014 salary
and the players average cNRA over the previous 4
seasons. Clearly, there is some connection between
ability and salary, but there are also other factors at
play. In particular, while winning matches is the
driving incentive for players, the team owners are
generally interested in profit. Of course, having a
winning team is a good way of generating profit, as
fans tend not to flock to watch losing teams.
However, there are other factors which determine
attendances and profits. Specifically, name
recognition is important in bringing in large crowds.
As such, we note that many of the apparently over-
valued players (i.e., those whose salary is large
relative to their ability, as measured by average
cNRA) are well-known Indian players, such as
ViratKohli and Yuvraj Singh, who would tend to
have loyal followings.

Alternatively, salaries may also be driven by
international economics.  Indeed, many of the
apparently under-valed players are from Pakistan or
the West Indies. In these countries, income for
cricketers is limited, and thus they will likely be more
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willing to play for (relatively) lower wages.
Furthermore, domestic players without any
international experience have their salaries capped.

Figure 2: average cNRA versus 2014 Salary for IPL Players
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Finally, though, we note that there is some

connection between skill and salary, and thus there
may well be interest among team owners in trying to
determine whether they are under- or over-paying
their players. Doing so might allow them to
construct a team more likely to be successful at a
fixed salary level.

4. CONCLUSION

In this paper, we have introduced extensions to
Lewis’ NRA measure of individual contribution to a
limited-overs cricket match. The extensions include
improved relative comparisons by employing
expected results which account for scoring rates of
the other players in the match as well as the relative
proficiency of actual opponents faced.

We have seen that the newly derived performance
metrics, aNRA and cNRA, have a reasonable
correlation with more traditional statistical measures;
however, given their use of contextual information
via the D/L methodology, we believe they provide a
more appropriate and interpretable measure of value.
Nevertheless, we should clearly note that these
measures do still have various deficiencies. In
particular, they cannot account for fielding, nor do
they account for the potential importance of
partnerships in determining valuable contribution to
the team outcome. For instance, it may be that a
batsman playing a “sheet anchor” role will be
extremely valuable to a team’s performance even
though on its own his innings may seem to be scoring
at a relatively low resource utilisation rate. Similarly,
strike bowlers are well-known to have generally high
economy (and thus resource utilisation) rates, but the
potential psychological factors that their inclusion in
the team brings may lead to other bowlers achieving
greater success than they otherwise would have.

To some extent, some of these shortcomings can be
ameliorated if we adjust our metric to focus not just
on the performance of individuals but on the outcome
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of a match. For example, a batsman playing the
“sheet anchor” role in a losing side may well be
blamed for batting too slowly, while in a winning
side his contribution is clearer. To this end, further
work on extending aNRA and cNRA to include
indicators of whether the individual player in
question was on the winning or losing side is
warranted and is currently ongoing.
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PROFITING FROM THE RUN CHASE IN 50-OVER CRICKET
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Abstract

This paper investigates fitting Weibull probability distributions to “required runs” data during the second
innings of one-day international cricket matches (ODI), to derive a profit from wagering. Each innings consists
of a maximum of 50 overs, which decay at a constant rate as the match progresses, and 10 wickets, which
decay as the bowling team dismisses each opposition batsman. Any intersection of these resources in the
second innings—defined in this research as the “match state”—yields the required runs variable (R) or the
difference between first-innings team (p) runs plus one runs (target) and observed second-innings team (q)
runs at match state, t. Historical match states were populated using “ball-by-ball” data and Weibull
distributions with optimised scale parameters fit to the R samples of sufficient size. Bootstrapping was applied
to generate relevant statistics in match states where parametric assumptions were violated. The probability
density function produced the likelihood of g defeating p, given any match state in the second innings and the
team strengths, which were determined by a betting agency’s head-to-head odds offered immediately prior to
the commencement of the first innings. The probabilities were converted to decimal odds and compared with
the betting agency’s odds of q defeating p, simultaneously offered at match state, t. A stratified betting strategy
with a fixed amount wager on the author’s head-to-head favourite at selected match states produced an
attractive return on investment.

Keywords: Weibull distribution; probability density function; return on investment

countless research opportunities through the game’s
lifetime; Lewis (2005) described the game of cricket
One-day international cricket (ODI) is a bat and ball as a “sporting statistician’s dream”. Statistical
sport comprising a maximum of 300 legitimate modelling of runs scored for predictive purposes has
independent trials, or deliveries from the bowling been of particular interest with work as early as
team to the batting team, over two innings. Each Elderton (1945) and Wood (1945) proving the
team needs to accumulate as many runs as possible geometric distribution to be an adequate fit for test
for a maximum of 50 “overs” (one innings) or until match cricket runs. In the 50-over game, Clarke and
10 of the 11 batsmen in the batting team are Allsopp (2001) and de Silva et al (2001) made use of
dismissed, or “out”. The team batting first is the Duckworth-Lewis rain interruption rules
declared the winner if one of these terminal points is (Duckworth and Lewis, 1998) to project a second
reached in the second innings with the second innings winning score, after the match’s completion,
batting team victorious if they surpass the first to calculate a true margin of victory with respect to
innings team’s total with wickets and/or overs runs, not just wickets. The online publishing of
remaining.* The discrete composition of limited- “ball-by-ball” data in recent times has facilitated
overs cricket, in comparison to test cricket which statistical modelling of matches in progress, or “in-
lasts a maximum of five days with each team play”. Swartz et al (2006) applied a log-linear model
allotted two innings each to score their runs, has to simulate runs scored during any stage of an ODI
provided statisticians and mathematicians with match for a proposed batting order while Sargent
and Bedford (2012) simulated in-play outcomes
through conditional probability distributions where
! The winning runs may be struck from the final delivery the likelihood of a run(s) or a dismissal was
of the innings.

1. INTRODUCTION
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estimated prior to any delivery. The huge volumes of
money wagered on ODI matches, as well as 50-over
matches at the domestic level, have whet the
appetites of researchers attempting to exploit betting
market inefficiencies. Bailey and Clarke (2004)
designed strategies to maximise profits derived from
wagering on one batsman outscoring another during
the 2003 ODI World Cup. Easton and Uylangco
(2007) were even able to provide some evidence of
the ability of market odds to predict the outcomes of
impending deliveries in ODI matches. The research
detailed in this paper was encouraged by fluctuations
in in-play betting market odds which, at certain
match stages, may over- or undervalue the
likelihood of a team winning the match. By
generating optimal betting moments with respect to
the “match state” and the strength of the competing
teams, it was anticipated that significant profits
could be derived from the inefficiencies in these
head-to-head market offerings.

The match state in either of the first or second
innings describes the evolution of an ODI match
through a finite number of intersections of overs—
sets of six deliveries from the bowling team—and
wickets—the number of times the bowling team has
dismissed a member of the batting team. Overs
decay at a constant rate as the match progresses
while wickets decay as the bowling team dismisses
each opposition batsman. Duckworth and Lewis
(1998) modelled the joint decay of these two
resources when setting revised second innings run
targets for rain-interrupted matches. To win the
match, the team (q) batting in the second innings of
an ODI attempts to eclipse the first innings team’s
(p) aggregate runs; this is termed the “run chase”.
Archival records suggest the highest ODI run chase
was achieved by South Africa in March, 2006,
surpassing Australia’s record first innings total of
434 with one delivery remaining in the match. The
lowest chase was achieved by Sri Lanka in April,
2004, chasing down Zimbabwe’s paltry total of 35
within the first ten overs of the match. With a
sample of ball-by-ball run chase data from
completed ODI matches going back to 2005, all
possible match states were populated by team g’s
required runs for victory (R) at any stage in the
second innings. Following some descriptive
analysis, Weibull distributions, with optimised o and
S parameters, were found to be adequate fits for
most of these R samples with the probability density
functions housing the likelihood of team q
surpassing team p’s run total at any match state, ti=.
The Weibull distribution was especially relevant
given its common use in testing failure rates
(achieving the run target) over a specified time span
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(50 overs) (Smith, 1993). In-play head-to-head
market odds of q defeating p were logged in close
intervals during a series of recent ODI matches,
assigned as the training set, then paired with the
Weibull odds from the same t. Pre-match head-to-
head market odds were also recorded as team
strength indicators. A stratified betting strategy was
devised where in-play betting moments were
conditional on the match state with the best fitting R
distributions, the pre-match market favourite and
states with positive overlay. Return on investment
increased as each stratum was added to the training
sample, reaching in excess of 20%.

2. METHODS
i Match State

An ODI match state, t,,, was defined in this research
as any intersection between the number of elapsed
overs (v; = 1,...,50) and the number of dismissals (w;
=1,...,10) during innings i = [1, 2]. Arriving at these
unique match states required ball-by-ball data which
was scraped from a cricket website then formatted
and cleansed so over, wicket and run aggregates for
every innings matched the “scorecard” (summary)
data retrieved from the same site. The foundation
variables were innings, delivery number and
dismissals—from which to calculate the match
state—first innings runs (the target) and runs scored
off each delivery in the second innings to calculate
the runs required for victory from any t. The sample
included every delivery from ODI matches played
by the recognized cricket nations (Australia,
England, India, New Zealand, Pakistan, South
Africa, Sri Lanka and the West Indies) dating back
to 2005. Matches which were abandoned after the
commencement of play or shortened due to rain
interruption were excluded from the sample because
of the erroneous effects of reduced targets. A total of
439 match states from all games were recognized
within the sample, excluding terminal points where
w, = 10. To ensure adequate distribution fits, only
match states with statistically large R samples were
selected.

Any match state during innings 2 accommodates the
random variable, runs required for team q’s victory,
or:

Rt =target— rqt (1)
where R;are required runs at match state t, target =
ror +1 where ryr are aggregate runs achieved at the
termination of the first innings by team p, where T,
= {tsomci0 U tso10}, and rq is aggregate runs
achieved by team g at match state t (r; = 0 at ).
The terminal state for i=2 is:
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ty<s010U tsowsao if Rt >0
if R, <0

T, = (2

q
tVS50,W<lO

where R; < 0 is victory to team ¢ where v < 50 is
inclusive of victory from the final delivery of the
match (v, = 50), and R; > 0 is victory to team p at T,.
If at Tq, Ri = 1, ry = rq and the match is declared a
draw. In this scenario, if the teams are playing in a
series, they share the points on offer; however,
punters predicting a p or q victory relinquish their
wager.
In limited-overs cricket, if team g achieves target,
they are said to have won by the number of wicket
resources remaining. In a famous match in 1996
against the West Indies, Australia, batting second,
required four runs for victory from the final delivery
with one wicket remaining (tsp9). Michael Bevan
was able to hit four runs from the final delivery to
hand Australia an unlikely victory; Australia won by
one wicket with R;= 0 at T,. In the case where there
are over resources remaining at R, < 0, rather than a
team winning by the number of wicket resources
remaining, a margin of victory with respect to runs
can be calculated by rearranging the Duckworth-
Lewis (D/L) formula for resetting a run target (due
to rain interruption) (Duckworth and Lewis, 1998),
as demonstrated by Clarke and Allsopp (2001) and
de Silva et al (2001). Say team q eclipses a modest
first innings total of 150 by 2 runs with ample
wickets and overs remaining, and their D/L run
projection is 275 runs by the end of the 50th over,
their margin of victory would be 275 - (150 + 2) =
123 runs. In defeat, team Q’s run projection remains
at rrand p is said to have won by R For this
research, where R; < 0, run projections were
retrospectively calculated for all ry, then required
runs at t recalculated as:
R = proj —rqt €))
where proj is the D/L projected run aggregate for
team q, replacing target. Equation (3) was deemed a
fairer reflection of g’s ability than (1) as it reflects
how much further q would have progressed into
their innings had they kept batting after surpassing
the target. Figure 1 reveals the spread of the
recalculated R mean at every match state through
each over (top) and wicket (bottom). The mean of R
at each match state in the sample has the lowest
interquartile ranges at the start and end of the match.
The start can be explained by a dismissal effect:
frequent wickets diminish proj and accrued team
runs—because batsmen become more defensive—
and very few wickets fall in the opening overs (for
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v=2, max(w)=2). The lesser interquartile range
towards match-end is logical because of the
combination of teams who win, or are closing in on
the target in the 50th over and teams who will not
reach the target by match-end. The diminishing R in
the wickets boxplot is reflective of a proportional
relationship with over rate - the further a match
progresses, the fewer the required runs are likely to
be but the more likely wickets are to have fallen.
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Figure 1. Dispersion of mean runs required through overs
(top) and wickets (bottom).

Distribution Fit

The two-parameter  Weibull  distribution is
commonly used in analysing lifetime data where a
measured quantity, X is set a “failure rate”,
proportional to some time period (Smith, 1993), for
example failure of electronic equipment over time.
Such properties were found to be applicable to an
ODI run chase where team g could be set such a
failure (or in this case, success) rate for achieving R
through 50 overs. Furthermore, the negative skew in
the majority of the R distributions demanded a
flexible distribution, with a wide variety of shapes,
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such as the Weibull. While it is difficult to locate
literature on the use of Weibull distributions in
cricket, its application in estimating goal
distributions in Association Football (Hamilton,
2011) and time between goals scored in the NHL
(Thomas, 2007) is interesting.

Once the appropriate match states had been selected,
Weibull distributions were fit to the R samples using
the probability density function (pdf), denoted as:

LS

f(R,A,k)=1 K
0

r&"—le—(f‘“)k JfR>0
4)

,otherwise

where k and A are the shape and scale parameters,
respectively. These parameters were optimised
through each sample to minimize the Pearson’s chi-
squared statistic, x° using the observed (O) and
expected (E) frequencies from Equation (1), or:

(0-E)
E

n

min 72 = >

r=0
s.t. A>0andk=5.

where k was fixed, i) to address the existence of left
and right tails in these distributions, ii) because k > 1
indicates the failure rate is proportional to time, such
as in a run chase. The mean and variance of the
Weibull distribution (see Table 1) are as follows:

Q)

1

E(R) = zr(u Ej (6)

2
var(R) = 22 r(1+ E] - [r(u %D @)

where T is the gamma function. Table 1 reveals the
ten match states with the lowest errors (in ascending
order) as determined by Equation (5). Of the 127
match states selected, the maximum overs bowled in
any state was 41 and maximum dismissals was 6,
suggesting small and/or volatile samples as the
second innings approaches its termination. The
lowest error was at ts3;4 averaging 88.19 runs for
victory, meaning, g required just over 88 runs in 13
overs; a run rate of 88/13 = 6.76 per over or just over
a run every delivery. Table 1 confirms the discussion
in Section 2i that mean and variance of R decrease
as the second innings progresses and team q acquire
their runs.

——

37

State(t) E(R) Var(R) P
(37, 4) 88.19 20.20 0.1104
(2,0) 242.35 55.51 0.1429
(1,0) 245.65 56.26 0.1467
(3,0) 242.83 55.62 0.1468
(26, 3) 135.93 31.13 0.1729
(29, 4) 118.52 27.14 0.1823
(5,1) 216.90 49.68 0.1855
(12,2) 186.53 42.72 0.1862
(7, 1) 213.71 48.95 0.2208
(39, 5) 77.99 17.86 0.2500

Table 1. Statistics for match states with lowest error.

In Figure 2, the evolution of f(R) as a match
progresses is revealed through selected distributions
(with optimised parameters). The right-most
distribution is at t; o, the most populated match state.
The long tails are reflective of the early match stage
where very few runs have been scored and no
wickets lost so a wide range of runs falls into the one
wicket sub-sample (w=0), closely reflecting the
match state prior to the commencement of the
innings. The left-most distribution (v=37 and w=4) is
taller with shorter tails; as the overs decay, required
runs progressively diminish and fall into
progressively more wicket sub-samples.
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Figure 2. Weibull distributions at four different match
states.

From the Weibull pdf, the probability of team g
scoring the required runs, R with respect to t is:

P(rg > R) e R ®)
where k =5, 1 > 0. A training sample was generated
which included a series of recently played ODI
matches between the recognised cricket nations. The
probabilities from Equation (8) were calculated at
the completion of each over and where match state
samples were large. Prior to investigating the
efficiency of the probabilities generated from the
Weibull pdf in the in-play betting market, the model
success rate was tested by calculating the percentage
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of correctly predicted team q victories from all valid

match scenarios, mean(#,), where:
1 if P>0.50bs=1

=<1 if P<0.50bs=0
0 otherwise

o )

where 6, is the binary outcome of match scenario I, P
is P(ry = Ry) and obs is the observed team g match
outcome:

1 if gdefeats p

0 if qloses to/draws with p (10)
The baseline model predicted 67.1% of team ’s
victories from any |, irrespective of important
modelling considerations such as team strength and
home ground effects. This success rate, whilst
modest, prompted an examination of the
probabilities’ performance in in-play wagering (see
Section 3).

iii. Betting Strategy

After the development of team q victory likelihoods,
a stratified betting strategy was investigated to
maximise the return on investment (ROI) in the
head-to-head ODI in-play markets. The first betting
stratum was generated by indentifying the
statistically significant match states (see Section 2i);
Table 1 offers the ten best fitting distributions. This
is the baseline model where fixed amount wagers, b
at selected t were defined by:

$100 if exp, <$2.00
C|$0 i exp, >$2.00

(1)

where exp is the Weibull pdf expectation of
defeating p expressed in decimal odds. Profit (z)
generated from each b; for exp < $2.00 was
calculated with:

7= obs(lOqu )— b, (12)
where mq is the in-play market price offered for g to
defeat p at t and obs is from Equation (10). The
second predetermined stratum was a team strength
effect, that is, betting on g when g was a stronger
side than p, as determined by pre-match market
decimal odds, so ¢4 < ¢, logged just prior to the first
delivery of i=1. A third stratum was included, which
identified exp with positive overlay, simply
calculated as (exp - mg)/exp. After locating and
matching reliable in-play market odds, profits at the
various strata could be calculated.
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3. RESULTS

Table 2 shows the baseline model to be unprofitable
(ROI=-8.62%) due to heavy losses between $1.01
and $1.39. The baseline model produces a 17.3%
ROI when betting on exp between $1.40 and $2.00;
however, this observation was made with the benefit
of hindsight. Such a trend would have to be
monitored in future matches to become reliable.

Interval AvePick Wagers SumProfit AveProfit
1.00-1.10 80.95% 21 -$287.00 -$13.67
1.10-1.20 50.00% 12 -$517.00 -$43.08
1.20-1.30 63.16% 19 -$449.00 -$23.63
1.30-1.40 54.29% 35 -$950.00 -$27.14
1.40-1.50 71.43% 21 $100.00 $4.76
1.50-1.60 93.33% 15 $608.00 $40.53
1.60-1.70 88.89% 3 $455.00 $50.56
1.70-1.80 0.00% 2 -$200.00 -$100.00
1.80-1.90 50.00% | -$5.00 -$1.25
1.90-2.00 60.00% 5 $12.00 $2.40

‘_ Grand Total 67.13% 143 -$1,233.00 -$8.62

Table 2. First stratum wagering profit - match state only.

Triggering the other stratum (betting on q when they
are the stronger side and with a positive overlay),
although reducing the number of wagers,
significantly increases ROI to over 22% (Table 3)
which is a considerable profit. The prediction
success rate (AvePick) of nearly 85% is also
encouraging.

[ Favourite I Y l
Overlay | + 4
Interval AvePick Wagers SumProfit AveProfit
1.00-1.10 100.00% 16 $98.00 $6.13
1.20-1.30 50.00% 2 -$50.00 -$25.00
1.30-1.40 63.64% 11 -$52.00 -$4.73
1.40-1.50 80.00% 5 $176.00 $35.20
1.50-1.60 100.00% 6 $432.00 $72.00
1.60-1.70 100.00% 4 $391.00 $97.75
1.70-1.80 0.00% 1 -$100.00 -$100.00
1.80-1.90 100.00% 1 $138.00 $138.00

Grand Total 84.78% 46 §1,033.00 $22.46

Table 3. Third stratum wagering profit - match state,
favourite and positive overlay.

In Table 4, results from Table 3 were filtered so
betting was triggered when prices were at or above
$1.40—the observation from Table 2—further
reducing the quantity of wagers, however, markedly
increasing the ROI, suggesting profits earned when
match outcomes are highly probable ($1.00 to $1.40,
or between 71% and 100%), do not adequately cover
losses in the same intervals. This is evident in Table
2 where a success rate of 81% in the $1.00-$1.10
interval translates to a -13.7% ROI.

Market inefficiencies were also located in intervals
of the first stratum, match state (Table 5). By
wagering on the stronger q in the first five overs of
innings 2, without any dismissals, ROl was 31%
suggesting that the markets become more efficient as
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wickets and overs progress, that is, as the match
outcome becomes more predictable.

[ avoite i [ —

| Overlay | t
Interval .« AvePick Wagers SumProfit AveProfit
1.40-1.50 80.00% 5 $176.00 $35.20
1.50-1.60 100.00% 6 $432.00 $72.00 ‘
1.60-1.70 100.00% ' $391.00 $97.75 |
1.70-1.80 0.00% 1 -$100.00 -$100.00 ‘
1.80-1.90 100.00% 1 $138.00 $138.00 |\

‘ Grand Total 88.24% 17 $1,037.00 $61.00

Table 4. Third stratum wagering profit - selected intervals

‘ Favourite ‘ y ;r‘

State = AvePick ‘Wagers SumProfit AveProfit
010 75.00% 7 $208.00 $29.71
02_| 75.00% 8 $50.00 $6.25
03_0 77.78% 7 $300.00 $42.86
04 0 63.64% 4 §159.00 §39.75
05_0 72.73% 4 §222.00 §55.50

Grand Total 73.68% 30 §939.00 §31.30

Table 5. Second stratum wagering profit - match state
intervals

4. DISCUSSION

ODI home ground advantage was not investigated in
this stage of the research but remains a critical factor,
particularly for sides like India where the pitches are,
arguably, the most unique in the world. Along with
team strength, included as a post-hoc consideration
in this research, such a factor might be best
addressed as adjustments to the generated
probabilities, rather than to the betting strategy.
Team strength was deliberately kept from the R
samples at this stage to preserve sample size,
however, it is anticipated that augmenting the
Weibull probabilities in Equation (8) would be an
effective solution, rather than further segmenting the
samples. The research almost certainly stands to
benefit from a mathematical approach to wagering,
rather the categorical one outlined in this paper. A
Kelly system, for example, where optimum wager
amounts are determined by a mathematical system,
would be a suitable starting point. Timelines
prevented this from being feasible but is now a high
priority. Extending the methodology outlined in this
paper to the 20-over cricket game would be
worthwhile because of volatile in-play markets.

5. CONCLUSION

The Weibull distribution is an interesting application
to in-play quantitative analysis as it is concerned
with a failure rate, that is, the chance of winning a
match, over some function of time, that is, the match
length. In-play likelihoods of victory, drawn from a
Weibull probability density function were not only a
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good predictor of the team batting second chasing
down their target in ODI matches, but a fine
indicator of when to lay a bet on that team doing so.
Selective betting moments in the match, defined by
elapsed overs and number of dismissals, the pre-
match favourite and a positive overlay, produced a
return on investment in excess of 20% which is an
excellent result. The only barrier a punter in
Australia may face, armed with such a tool, is the
inability to place a bet on the internet. The beauty of
cricket is that time between overs should be
sufficient to make a telephone call and lay the bet.
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THE DEVELOPMENT OF A PERFORMANCE BASED
RATING SYSTEM FOR LIMITED OVERS CRICKET
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Abstract

Methods for rating teams in cricket are hampered by the way match results are recorded. If the team that
batted first wins, then the margin of victory is expressed in terms of the difference in runs between the team
batting first and the team batting second. However, if the team batting second wins, the margin of victory is
then expressed as the number of remaining wickets for the team batting second. As there is no meaningful
mapping function between these two forms of margin of victory, team rating systems in cricket default to
mechanisms based on win\loss records over a defined time frame. This paper outlines a method for creating
performance based team ratings for cricket for application with limited overs cricket, utilising a margin of
victory that is solely runs based.

The challenge lies in the implementation of a method for calculating the margin of victory for the team
batting second. This is resolved by estimating the number of runs that would have been scored had the team
batting second continued until their resources were exhausted. In this instance, resources refer to the number
of wicket and balls that are available. The underlying approach is similar to the Duckworth-Lewis method
(Duckworth & Lewis, 1998) for resetting the target in rain interrupted matches. The consequence is a more
meaningful way of comparing results which is useful for coaching and development purposes.

To create a meaningful rating, the algorithm outlined by Bracewell et al. (2009) is implemented. This
method has been shown to produce robust ratings based on the relative performances of the competing teams
across a wide range of different types of team sports. The resultant ratings are validated using an existing
rating system.

Keywords: cricket, team ratings, Duckworth-Lewis

Cricket is a data rich sport characterised by
1 INTRODUCTION distinct events between a batsman and a bowler,
There is a large amount of interest surrounding the which are all recorded as a minimum standard as
statistics of sports, evidenced by the adaptation of defined by the laws of the game. However, the way
Michael Lewis' (2004) book, Moneyball, into a that the margin of victory is defined complicates the
movie (Miller, 2011), describing the use of statistics ability to create meaningful team ratings.
in baseball. This interest comes from different Considering the limited overs example only, where
people for different reasons. Teams and coaches are set number of overs are specified and each team
critically analyse the performance of individuals, is permitted one innings, the winner is the team that
combinations and teams to derive insights for has the most runs at the completion of both teams
enhancing performance and creating strategies; for turn batting. Crucially, the innings is completed
this they need as much information as possible. Fans either when the allotted overs have been bowled, the
seek to know how their team, or favourite player, is team is dismissed, or, for the team batting second,
performing relative to other teams or players. In the target total has been reached. If the team that
both these examples, it is necessary that suitable batted first wins, then the margin of victory is
statistics are simple to understand and interpret, but expressed in terms of the difference in runs between
embody as much important information as possible the team batting first and the team batting second.
to satisfy their desires. However, if the team batting second wins, the
margin of victory is then expressed as the number of
remaining wickets for the team batting second. As
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there is no meaningful mapping function between
these two forms of margin of victory, team rating
systems in cricket tend to default to mechanisms
which tend to use competition points, win
percentage or net run rates over a defined time
frame.

The aim of this paper is to create a meaningful
statistic for cricket that quantifies a team’s
performance wusing a method that is more
informative than the current methods for assessment.
This aim is achieved by the introduction of a
method for creating performance based cricket team
ratings for  limited overs cricket, utilising a
framework that provides a margin of victory that is
solely runs based. The development of a consistent
method for quantifying the magnitude of victory
with a standard measure enables standard rating
methods to assess the relative performance of teams
competing within a closed competition.

This approach provides greater depth of detail in
team assessment than  winner-takes-all type
mechanisms, such as competition points or win
percentage, which are fundamentally binary, or at
best, ordinal (ICC, 2014). These approaches ignore
close losses. Net run rate is an accepted method for
ranking teams within a competition, as it is used for
breaking ties in limited overs tournaments (ESPN,
2014). The net run rate for a team is calculated by
subtracting the average runs per over scored against
that team throughout the competition from the
average runs per over scored by that team
throughout the competition. However, net run rate
does not take into account the number of wickets
that have fallen when a chasing team wins a match.
The impact of this is most clearly seen in low
scoring games. If for example the team batting first
is bowled out for 100 in 25 overs in a 50-over game.
Then the team chasing wins by scoring 101 in 20
overs, their net run rate will be 101/20-100/50=3.05.
A net run rate that large would indicate a very large
win, but if the winning team was nine wickets down
when they reached the target you would consider the
win as anything but convincing.

Through the development of a margin of victory
metric which is consistent, irrespective of whether
the team batting first won or lost, enables a
meaningful rating to be created which encompasses
relative team performance. Importantly, this enables
interested parties to review a single statistic to
understand how well a team has performed
compared to their competitors. In addition, the
statistic is an indication of the team's "form"; hence
when two teams play each other it provides an
indication of not only the result (winner/loser), but
also how evenly matched the contest will be.
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2. TEAM RATING SCORE COMPONENTS

The challenge for creating a suitable team rating for
cricket lies in the implementation of a method for
calculating the margin of victory for when the team
batting second wins. This is resolved by estimating
the number of runs that would have been scored had
the team batting second continued until their
resources were exhausted. That is, had a team
chasing 200 runs to win in 50 overs reached that
total in just 42 overs, what would they have scored
had they batted out their allotted overs?

2.1 Methods for forecasting cricket scores

The underlying philosophy we adopt is the same as
that used by Duckworth and Lewis (1998), where
the basis of their method is recognition that the
batting team has two resources at its disposal from
which to make its total score; it has overs to face and
it has wickets in hand. Duckworth and Lewis
acknowledge the influence of Clarke (1988) in
highlighting potential approaches for setting a fair
target in rain interrupted one-day matches. An
alternative approach for resetting targets, deployed
in the now defunct Indian Cricket League, was
derived by Jayadevan (2002). Importantly, both
methods determine what proportion of a team's runs
it is expected to have scored, based upon the number
of overs faced and the number of wickets lost. This
approach enables the method to be deployed into
different match conditions as there is an inherent
adaptation to the run rate in the match.

However, these methods are used to adjust rain
affected targets. In order to generate a margin of
victory, the method needs to extrapolate a second
innings score, rather than interpolate.

2.2 Rating Methods
Daud and Muhammad (2013) use adaptations of two
algorithms: PageRank, designed to rank websites in
search engine results, and h-index, designed to
measure the impact of a scientist's cumulative
contributions, for ranking teams. The intent was to
give more weight to a team defeating stronger teams
by considering the number of runs and wickets.
This approach derives a rating by considering a
number of recently played matches and assesses the
total number of wickets taken and runs scored in
those matches. This approach avoids the issue of
defining a margin of victory, but does not consider
the runs and wickets scored in each match
independently.

There are numerous publications describing the
development and improvement of sport ratings
systems. Stefani (2011) provides a detailed review
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of methods for officially recognised international
sports rating systems and is an excellent resource for
evaluating the strengths and weaknesses of various
systems.

Bracewell, Forbes, Jowett, and Kitson (2009)
introduced a method for quantifying the relative
performances of teams, which used score ratios
rather than scores (or differences), which simplified
the calculation of the Team Lodeings, L, for the Tth
team to:

iy ay
22}:-'-;'2‘1'-?
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where hy and ay are the respective number of home
and away games played by the Tth team, py; is the
ratio of victory for the Tth Team in the fth match at
home and q;; is one minus the ratio of victory for the
Tth Team in the gth away match. The ratio of
victory is calculated for each match as the
normalized points scored by the home team divided
by the sum of the normalized points scored by the
home and away teams. Team ratings are calculated
for a specified time frame, t, (typically either weeks
or rounds, where t > hT + aT) enabling team
performance to be rated and changes in performance
to be quantified. This is useful for match prediction.
Higher team ratings are associated with better
performed teams. The ratings are bound by 0 and 1.
Importantly, this algorithm is suitable for use within
cricket as the use of score ratios enables the impact
of extraneous factors to be limited (boundary size,
pace of wicket and state of outfield). The score ratio
method is preferred as it provides a fairer assessment
of the performance of both teams in the result.
Consider rugby-type results 13:3 and 40:30. Both
have a difference in scores of 10. However, in the
second case it appears the game was much more
even than in the first instance. This is reflected in the
score ratios which are 0.81 and 0.57, respectively.
In addition, this approach was shown to be robust
across many different sports, which is a useful
property when considering different cricket match
formats (T20, 40 over & 50 over). Finally, the
emphasis of this paper is the consistent definition of
the margin of victory in cricket, meaning that the
ratings method is a secondary consideration.

Whilst we have chosen to use the ratings
algorithm described above in this paper, an area for
future research is the assessment of other algorithms.

L=

3. CONSTRUCTING A PERFORMANCE
BASED RATING SYSTEM FOR LIMITED
OVERS CRICKET
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There are three key components in the development
on a performance based rating system for limited
overs cricket. The first component is the data. The
second component, and the most important
contribution of this paper, is the extrapolation a
chasing team's total after the total has been reached
so that a margin of victory in terms of runs can be
extracted. The second stage is the application of a
ratings algorithm to summarise the relative
performance of teams.

3.1 Processing Data

Data was extracted from CricHQ's source systems
(www.crichg.com). CricHQ is a cricket technology
industry pioneer with headquarters in Wellington,
New Zealand. CricHQ's scoring and competition
administration software collects cricket data from all
around the world over numerous levels of
competition. The data used for this project included
final score data from five premier T20 competitions
around the world (included Indian Premier League,
HRV Cup and more), over the past one to five years,
depending on the length of history of that
competition). We also used data from One Day
International matches between the top ten ranked
sides dating back to 2000. For simplicity, we assess
matches that were not affected by rain. Whilst the
Duckworth-Lewis method can be used to adjust the
totals in rain affected matches, we have omitted
those games from our initial analyses. Subsequent
applications use an adjustment based on the
Duckworth-Lewis method.

3.2 Extrapolating a Chasing Team's Total

In the previous sections it was stated that the main
obstacle preventing cricket from being processed
using typical team rating algorithms, is due to the
margin of victory problem. When team one, batting
first, wins a game of cricket the result will be stated
as ‘team one wins by x runs’. However, when team
two, batting second, wins the result will be stated as
‘team two wins by y wickets’. The reason for this is
that team two stops batting as soon as their score is
greater than team ones score (the target score).
Consequently, we cannot report how many runs
team two won by because they may not have used
up all their resources (balls or wickets), and hence
could have scored more than they actually did.

To resolve this issue, we seek to produce a
projection of the score team two would have got too
had they not stopped batting as a consequence of
winning the match. The intent is that after this
calculation, we will have a margin of victory for
every game in terms of runs. The process employed
to produce the projections is based on a proprietary
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algorithm created for CricHQ which includes a
generic score and probability of winning projection
model. The output is available via the CricHQ
platform (accessed via app stores for a variety of
technology platforms). The model considers the
resources available to team two at the completion of
the game. In this instance, resources refer to the
number of wicket and balls that are available similar
to the Duckworth-Lewis method (Duckworth &
Lewis, 1998) for resetting the target in rain
interrupted matches.  If either of team two’s
resources have been exhausted at the completion of
the game then the projection will simply be team
two’s actual score. However, if team two still has
resources remaining, but the game is finished, then a
score projection is calculated. The difference
between team two’s forecasted total and their actual
total is positively related to the amount of resources
still available to the team at the completion of the
game. This encompasses the wickets and balls
resources, along with a value derived from the
relative team totals, to produce a metric that
represents the proportion of total resources used by
team two at the completion of the game. Again, this
approach is similar to that used by Jayadevan
(2002), Duckworth and Lewis (1998). We then
divide team two’s actual score (C,) by this
proportion (R,) to get a projection (T,).

Cz

T, =
2 Ry

)

This result leaves us with a margin of victory for
every match regardless of which team won. The
model is a generic model, and hence allows us to
produce projections and win margins for multiple
forms of cricket. However, the focus of this paper is
limited overs cricket (T20 and 50 Over matches).
From a practical perspective, this is useful for
CricHQ as it enables the deployment of ratings for
teams playing in different age-groups, divisions and
competitions across different formats.

3.3 Score Transformations

The projections of the previous section provide us
with a win margin in terms of runs for all games
irrespective of whether the team batting second won
or lost. These are necessary because in creating the
team rating we will be using the score ratio which is
defined as the final total of the team batting first (T,)
divided by the total number of runs scored in the
match (T, + T,); where T, is the final adjusted total
of the team batting second. The final adjusted total
for the chasing team is simply the final total when
the chasing team loses or wins from the last ball on
the innings.
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However, the raw scores and projections
discussed in the previous section are not suitable for
immediate using in a rating algorithm. The nature of
cricket is such that the scores of both teams tend to
be large numbers (compared with sports like soccer,
hockey and rugby union), typically between one and
two hundred for T20 cricket. This is not ideal
because when the score ratios are calculated based
on the raw scores there is not a good spread of the
resultant output between zero and one, because the
margin of victory is relatively small compared to the
team’s totals. Instead our ratios will be heavily
concentrated around 0.5, typically between 0.4 and
0.6. In addition, the raw team totals are also far
from being a normally distributed variable. We
perform two transformations: to first produce a
normally distributed variable, and then change the
scale of this variable so that it has a mean and
standard deviation that will result in ratios that cover
a good range between zero and one.

A log transformation was used to turn the raw
scores distribution, less a constant value, to an
approximately normally distribution. The purpose
for this is to reduce the impact of outlying scores
and mitigate the impact when chasing teams are
dismissed cheaply under ideal batting conditions.
The constant used was determined heuristically and
chosen to minimise the kurtosis of the distribution.

3.4 Assessing the Validity of Extrapolation
Before we are able to proceed with deriving the
score ratios, the validity of the score extrapolation
for when the chasing team wins needs to be assess.
To assess this we compare the margins of victory in
games where the team batting first wins compared to
when the team batting second wins. Ideally, the
winning margin of victory will be distributed
similarly from the perspective of batting first or
second. As the margin of victory when team two
wins without using all their resource is based on an
extrapolation we need to ensure that the projections
have not produced margins of victory that are
significantly different from those that are produced
when the team batting first wins. This is to ensure
the rating does not tend to unfairly favour either
side. The extrapolated total is based on remaining
resources. However, one of the strongest indications
of the scoring potential is the number of balls
remaining. Consequently, it is expected that by
plotting the derived margin of victory against the
number of balls remaining should display a
symmetric function, with a turning point near zero,
to be a suitable fit.

Figure 1. below shows the transformed margin of
victory for T20 games (defined as the transformed
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team setting score minus the transformed team two
chasing score) on the horizontal axis with the
number of balls remaining in the second innings
shown on the vertical axis. This means the negative
x values correspond to when the team batting first
(setting) lost to the team batting second (chasing).

90

80

Balls Remaining in the Second Innings

-60

-20
Margin of Victory

20 60

Figure 1. Transformed margin of victory for T20
matches versus balls remaining in the second
innings.

There are several key outcomes from the above
graph. It can be seen that that the margins of victory
do not appear to be drastically different, with the
majority of observations being concentrated between
plus and minus thirty units and appearing to exhibit
symmetry. These key features can be confirmed
statistically. A quadratic function adequately
explains the relationship between  transformed
margin of victory and balls remaining (r-sq =
0.8694), highlighting the symmetry. The resultant
function:

B =0.0436M? — 0.4999M + 2.1931 ©)
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where B is the estimated balls left and M is the
transformed margin, indicates that the obtained
margin of victory is indeed symmetrical and
approximately near 0. To confirm that the
distributions of the margin of victory below and
above zero are relatively similar an F-test for sample
variances was performed. The variance of the
transformed margin of victory when the team bats
first win (52.04, n=454) is not statistically
significantly different (p=0.18) to the variance of the
transformed margin of victory when the team batting
second wins (56.73, n=426).

Consequently, the inability to reject the null
hypothesis, that the variance of the transformed
margin of victory when team one wins is the same as
the variance of the transformed margin of victory
when team two wins, confirms that the extrapolation
of a winning chasing team total has not introduced
any significant bias.

In addition, a t-test for sample means assuming
equal variances was performed to test if the margins
of victory have a similar mean irrespective of
whether the team setting or chasing wins. For this
test we use the absolute value of the margin of
victory if team two wins so all margins are positive.
The mean of the transformed margin of victory
when the team bats first win (8.98, n=454) is
statistically significantly different (p=0.04) to the
mean of the transformed margin of victory when the
team batting second wins (7.94, n=426). However,
practically, the difference is only 1 unit, which
equates to just 2.8 runs.

Based on these results, there is sufficient
statistical evidence to conclude that the method for
projecting totals when the chasing team wins has not
produced margins of victory that are unreasonable
when the team batting second wins.

These tests have been focused on T20 data that has
been projected and transformed. However, our
projection model is produced as a generic projection
model, therefore we would expect that the same
interpretation would apply to 50 over cricket.

As with the T20 matches, a quadratic function
adequately explains the relationship between
transformed margin of victory and balls remaining
(r-sq = 0.6873), highlighting the symmetry in 50
over matches. The resultant function:

B =0.1149M? — 0.1407M + 122810  (4)
where B is the estimated balls left and M is the
transformed margin, indicates that the obtained
margin of victory is indeed symmetrical and
approximately centred around 0.  To confirm that
the distributions of the margin of victory for 50 over
cricket below and above zero are relatively similar,
an F-test for sample variances was performed. The
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variance of the transformed margin of victory when
the that team bats first wins (56.57, n=1136) is not
statistically significantly different (p=0.12) to the
variance of the transformed margin of victory when
the team batting second wins (60.60, n=1217).

Consequently, the inability to reject the null
hypothesis, that the variance of the transformed
margin of victory when team one wins is the same as
the variance of the transformed margin of victory
when team two wins, confirms that the extrapolation
of a winning chasing team total has not introduced
any significant bias.

In addition, a t-test for sample means assuming
equal variances was performed to test if the margins
of victory have a similar mean irrespective of
whether the team setting or chasing wins. For this
test we use the absolute value of the transformed
margin of victory if team two wins so all margins
are positive. The mean of the transformed margin of
victory when the team that bats first won (8.93,
n=1136) is not statistically significantly different
(p=0.89) to the mean of the transformed margin of
victory when the team batting second wins (8.89,
n=1217).

Based on these results focused on 50 over cricket,
there is sufficient statistical insight to conclude that
the method for projecting totals when the chasing
team wins has not produced margins of victory that
are unreasonable when the team batting second
wins.

The results from this validation of the margin of
victory on two different limited over match formats
are critical. The method for extrapolating the total
for the team batting second if their innings had
continued until all resources were consumed
generates a margin of victory in runs that is
equivalent to the margin of victory obtained when
the team batting first wins.

This sub-section has shown that we are in the
position to apply a margin of victory in different
situations, and hence create cricket team ratings for a
number of different competitions using runs
(observed and adjusted) as a performance metric.

3.5 Quantifying Relative Team Performance

The process for deriving the ratings is simple.
Firstly, the framework for obtaining a margin of
victory in terms of runs is deployed, enabling
meaningful score ratios to be obtained. When the
team batting first wins, or the team batting second
wins on the last ball of the innings, the margin of
victory is simply the difference between the total
runs scored by each team (setting team total minus
the chasing team total). If the team batting second
wins with one or more balls remaining in the
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innings, then an adjusted final total is required. The
projections are based on the resources, wickets and
overs, that the chasing team has left at the
completion of their innings. The data to derive these
resource variables are readily available from
scorecards which are readily available from several
online data sources, for example: www.crichg.com,
www.espncricinfo.com & www.cricketarchive.com.
This information is used to calculate the proportion
of resource consumed at the time of victory using a
proprietary algorithm. The adjusted final total is
then the observed final total divided by the resources
consumed, which is our projection of what the
chasing team would have scored had victory not
ended the match.

The process described by Bracewell et al. (2009)
is used to quantify the relative performances
between competing teams. First, the totals are
transformed to rugby-type scores. This is achieved
by subtracting a constant, then applying a natural log
transformation with linear scaling applied. This
process is data driven to cater for different
competitions and formats. Then the score ratio for
each match is obtained, calculated as the final
transformed total of the team batting first (T,)
divided by the sum of transformed runs scored in the
match (T, + T,); where T, is the transformed final
adjusted total of the team batting second.

These ratios are then input into the rating
algorithm. For domestic cricket, previous results
from approximately one year and one month are
considered (380 days). For international cricket
where matches are more sparse, almost twice this
range is examined (approximately 2 years and 2
months or 800 days).

In a departure from the rating algorithm
described above, the raw ratings obtained were
regressed against the winning percentages in order to
derive a linear transformation that would increase
the spread of the ratings between 0 and 1. The other
consequence of this step was to create a rating that
had a more natural interpretation, in that a team with
a transformed rating of 0.7 tended to have a winning
percentage of 70%. An index type measure was
created by multiplying the transformed rating by
1000.
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4. VALIDATING RATING PERFORMANCE

To validate the performance based rating system for
limited overs cricket the team ratings are compared
to the ICC ratings, produced by cricket's governing
body.

4.1 Comparison with ICC ODI Ratings

Cricket's governing body, the International Cricket
Council (ICC) regularly updates and publishes
ratings for the three major forms of international
cricket (T20, ODI and Test). A detailed explanation
of the ratings can be found at several sources (e.g.
ICC, 2014; Daud, 2013). In the graph below we
compare the month end ICC ODI Ratings from
January 2000 to March 2014 for the top 10 teams
plotted against our corresponding team rating
(Australia, England, New Zealand, India, Sri Lanka,
West Indies, Pakistan, Bangladesh, Zimbabwe and
South Africa). We can see clearly that the two
ratings are correlated (r=0.91), indicating our
approach is valid. As the ICC ratings are credible, it
is important that our rating is highly correlated. We
would not expect the relationship to be perfect
because of the difference in methods, but the general
movements of teams rating over time should be
similar.
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Figure 2: Scatter Plot of ICC ODI team ratings
versus performance based team ratings.
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The evolution of ratings of time is shown in the
graph below. Figure 3 shows the ICC ratings over
time for Australia as well as the team performance
rating, which has been arbitrarily scaled for display
purposes.
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Figure 3: Line plot of ICC ODI team ratings overlaid
with performance based team ratings for January
2000 to March 2014.

In the line plot above the two lines which represent
the Australian cricket team's rating over the last
decade appears to follow the same general slow
upward or downward movement. The team
performance rating is more variable, which is likely
to be a result of the different methods of calculation
for our rating compared to the ICC rating. The ICC
rating also only drops games once a year (since 2012
start of every May, previously August), where they
drop the oldest year worth of data and then begin
adding all the new games as they happen.
Consequently, for most of the year the monthly ICC
rating will be based on a larger number of games
than the previous month and therefore, it will be less
variable. The team performance ratings are based on
a set number of days. For comparison purposes, this
means at the end of each month the oldest data
month of data is dropped, and the most recent month
of data added.

5. CONCLUSION

This paper has outlined a method for creating
performance based team ratings by adapting
approaches that have previously been explored in the
sport statistics literature. The two key components
for this were: a method for forecasting runs, and an
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algorithm for assigning ratings to team performance.
The major contribution of this paper is the
evaluation of victory in a cricket match as runs,
irrespective if the team batted first or second.

A proprietary algorithm was used to forecast
what a winning chasing team may have scored if
they had continued to bat on once victory had been
achieved; However, the approach used is
philosophically the same as Duckworth and Lewis
(1998) and Jayadevan (2002) where forecasted score
totals are based on batting resources, wickets and
overs, remaining. The distribution of margin of
victory results for victorious chasing teams was not
statistically ~ significantly  different from the
corresponding distribution when teams batting first
won. This indicated that no systematic bias, based
on batting first or second, was introduced to our
evaluation of the magnitude of victory.

A ratings algorithm that used score ratios
(Bracewell et al., 2009) was then used to calculate
ratings for defined time frames. An area for future
research is investigating the applicability of different
types of rating methods.

The performance of the ratings was validated by
comparing with the ratings produced by cricket's
governing body, the ICC. A correlation of 0.91
indicated that the team ratings created by the
proposed performance based rating system for
limited overs cricket is valid. Importantly, a range of
limited over formats are covered by this approach.
Additionally, the high correlation between the ICC
ratings and the performance based team ratings
indicate that the extrapolation of runs in the second
innings provides meaningful results and that the
rating algorithm used is suitable.

The consequence is a more meaningful way of
comparing and tracking results which is useful for
coaching and development purposes which can
extend to assess player impacts on results.
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Abstract

The prediction of future athletic performance is a recurring theme as sports scientists strive to understand the
predicted limits of sports performance. Predictive models based on Olympic data for athletics have derived
some accurate predictions of performance in the 2000, 2004, 2008 and 2012 Olympic Games. The aim of this
research was to develop predictive models using performance data of the first three athletes competing in the
finals of the men’s shot put, discus, hammer and javelin at the Summer Olympic Games from Berlin 1936 to
London 2012. The approach utilised regression-curve estimation using IBM SPSS Statistics Version 22
statistical software and by evaluating fit to linear, logarithmic, inverse, quadratic, cubic, compound, power,
sigmoidal, growth exponential and logistic functions. The mathematical models varied represented very good
predictors of past, current future throws performance in the four field events based on R? (0.850 - 0.972), p-
values (<.001) and unstandardized residuals or error. The non-linear function of best fit for events was the
cubic function, which indicated a decrease in performance in recent Olympics and predicted this performance
decline would occur at the 2016 Olympic Games in Rio de Janeiro. The reasons for the current and predicted
declines were more vigilance concerning drugs in sport and therefore dampening the enhanced performance
effect of anabolic androgenic hormones, fewer athletes are undertaking the throwing events as a completive
sport and changes in the source population providing the sample of potential throws athletes in Australia in
terms of motor fitness abilities are getting smaller in terms of motor fitness abilities and thus fewer capable
athletes exist to select from within source population. The good predictive models may be due to a longer
timeframe data set to develop substantive predictive models, a timeframe able to detect phylogenetic trends in
human athletic performance. The predictions may indicate a slightly modified Olympic motto from citius,
altius, fortius to citius, altius and infirmius or “faster, higher and weaker?”

Keywords: Olympic Games, Throwing Event, curve estimation, nonlinear regression, predictive
mathematical modelling
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1. INTRODUCTION

The prediction of future athletic performance by
athletes at the Olympic Games is a recurring theme
as well as forming the basis for some stimulating
discussions on the limits of human performance.
Mathematics in sport and exercise and sports science
are based on the principles of description and more
importantly prediction. The ability to make
substantive and accurate predictions of future elite
level sports performance indicates that such
approaches reflect substantive sport science. Often
these predictions are purely speculative and are not
based upon any substantial evidence, rather they are
based on the belief that records are made to be
broken and that performances based on past
experiences must continue to improve over time.
The accessibility of data in the form of results from
Olympic Games, world records and world best
performances in a specific year allows the analysis
of performances in any number of events. From
these analyses, changes in performance over time
can be observed and predictions of future
performance can be made utilising the process of
mathematical extrapolation and interpolation.

A number of researchers have attempted to predict
future performances by deriving and applying a
number of mathematical statistical models based on
past performances in athletics. Prendergast (1990)
applied the average speeds of world record times to
determine a mathematical model for world records.
The records or data used in the analysis spanned a
10 year period. Following his analysis, Prendergast
(1990) raised the question of whether any further
improvements can be expected or if the limits of
human performance have been reached. The sports
of athletics (Heazlewood and Lackey, 1996;
Heazlewood, 2011, 2013a, 2013b) and swimming
(Lackey and Heazlewood, 1998) have been
addressed in this manner. The knowledge of future
levels of sporting performance has been identified
by Banister and Calvert (1980) as beneficial in the
areas of talent identification, both long and short
term goal setting, and training program development
based on the next level of expected future
performance. In addition, expected levels of future
performance are often used in the selection of
national representative teams where performance
criteria are explicitly stated in terms of athletics
times and distances for example as required entry
standards at Olympic Games (International Olympic
Committee (I0C), 2014).

Péronnet and Thibault (1989) postulate that some
performances, such as the men's 100m sprint is
limited to the low 9 seconds, whereas, Seiler
(referred to by Hopkins, 2000) envisages no limits
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on improvements based on data reflecting
progression of records over the last 50 years.
According to Seiler improvements per decade have
been approximately 1% for sprinting, 1.5% for
distance running, 2-3% for jumping, 5% for pole
vault, 5% for swimming and 10% for skiing for male
athletes, whereas female sprint times may have
already peaked. The differences for males and
females it is thought to reflect the impact of
successful drugs in sport testing on females.
Previous derived curve estimations that significantly
fit the data have also displayed interesting findings
as no one curve fits all the data sets. Different events
displayed different curves or mathematical functions
(Lackey & Heazlewood, 1998) of best fit. In
swimming the men’s 50m freestyle was inverse,
100m freestyle compound, 200m sigmoidal, and the
400m and 1500m freestyle cubic.

In athletics for the men’s events the mathematical
functions (Heazlewood and Lackey, 1996) were
100m inverse, 400m sigmoidal, long jump cubic and
the high jump displayed four functions (compound,
logistic, exponential and growth). The curves that fit
the data have also displayed interesting findings as
no one curve fits all the data sets. This may indicate
that different events are dependent upon different
factors that are being trained differently or factors
underpinning performance evolving in slightly
different ways. This has resulted in different curves
or mathematical functions that reflect these
improvements in training or phylogenetic changes
over time. However, at some point in the future
when time catches-up with the actual performance,
then how accurately the predictive models reflect
reality can be assessed.

However, the ability to predict performances at the
2000, 2004, 2008 and 2012 Olympic Games for the
men’s 100m, 400m, long jump and high jump, based
on the 1924 to 2012 data, was very accurate with
low percentage error. The International Olympic
Committee (IOC, 2014) has produced descriptive
data and descriptive graphical analysis to indicate
trends in World records for the men’s throwing
events however not based on mathematical
predictive modelling.

The dominant and important research question is,
can mathematical models based on nonlinear curve
estimation, which have proven to be very successful
in fitting and predicting past, current and future
Olympic performances for event finals in athletics
and swimming for men display equal effectiveness
in predicting athletic performances in the men’s
throwing events of the shot put, discus, hammer and
javelin at the Olympic Games, which are past,
current and future performances?
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2. METHODS

The mean score for the first three placed finalist in
the men’s throwing events which consist of the shot
put, discus, hammer and javelin. The data were
selected from 1936 to 2012 Summer Olympic
Games and provided by the International Olympic
Committee (IOC, 2014) served as the exemplars for
performance in each event for each competitive
year. The data covered eighteen Summer Olympics.
These scores served as the data set to derive and test
predictive models based on curve estimations and
the distances in each event was recorded metres to
the nearest centimetre.

This is a similar method used previously
(Heazlewood & Lackey, 1998; Heazlewood, 2006,
2008, 2013a, 2013b) to curve fit Olympic data for
swimming and athletic events. According to Garson
(2010) curve estimation is an exploratory tool in
model building and model selection, where the best
mathematical model or function is selected to
represent quantitative relationships between an
independent/predictor variable and a
dependent/response variable. The mathematical
solutions and curve estimations were derived using
the IBM SPSS Statistics Version 22 statistical
software (SPSS Inc. 2014).

The most common curve estimation or model fit
approaches are based on the following mathematical
functions (Garson, 2010) and these are linear,
logarithmic, inverse, quadratic, cubic, power,
compound,  S-curve, logistic, growth, and
exponential models. In terms of statistical approach
model fit indices are then applied to test the quality
of the model and the general method of determining
the appropriate regression models is represented by
the following steps.

1. Commence with an initial estimated value for
each variable in the equation.

2. Generate the curve defined by the initial values.
Calculate the sum-of-squares (the sum of the squares
of the vertical distances of the points from the
curve).

3. Adjust the variables to make the curve come
closer to the data points. There are several
algorithms for adjusting the variables. The most
commonly used method was derived by Levenberg
and Marquardt (often called simply the Marquardt
method). Adjust the variables again so that the curve
comes even closer to the points. Keep adjusting the
variables until the adjustments make virtually no
difference in the sum-of-squares.

4. Report the best-fit results and then the precise
values you obtain will depend in part on the initial
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values chosen in step 1 and the stopping criteria of
step 5. This means that repeat analyses of the same
data will not always give exactly the same results.
To investigate the hypotheses of model fit and
prediction, the eleven regression models were
individually applied to each of the athletic events.
The regression equation that produced the best fit for
each event, that is, produced the highest coefficient
of determination (abbreviated as R?), was then
determined from these eleven equations.

5. The specific criteria to select the regression
equation of best were the magnitude of R? the
significance of the coefficient of determination (R?)
is a measure of accuracy of the model used. A
coefficient of determination of 1.00 indicates a
perfectly fitting model where the predicted values
match the actual values for each independent
variable (Garson, 2010; Hair et al., 2006; Norusis,
1993). Where more than one model was able to be
selected due to an equal R?, the simplest model was
used under the principle of parsimony, that is, the
avoidance of waste and following the simplest
explanatory model, as well as the statistical
significance of the analysis of variance, the alpha or
p-value and size of residuals or error in predictions.
6. Some caution is required to not over interpret a
high R? as it does not mean that the researcher has
chosen the equation that best describes the data. It
also does not mean that the fit is unique - other
values of the variables may generate a curve that fits
just as well.

It should be noted the men’s. Shot, discus and
hammer have not changed dramatically in
specification concerning weight, area and volume
making comparisons across Olympic year possible.
The men’s javelin specification was changed in 1
April 1986; the men's javelin 800 grams was
redesigned by the IAAF Technical Committee
(International Association of Athletics Federations
(IAAF), 2014) where the centre of gravity was
moved 4 cm forward and the surface areas in front
of, and behind the centre of gravity were reduced
and increased, respectively. The effect was to reduce
lift and increase the downward pitching moment
resulting in bringing the nose down earlier and
reducing flight distance by around 10% but causing
the javelin head to stick in the ground more
consistently.

3. RESULTS
The results as illustrated in table 1 indicates each

men’s throwing events, best-fit functions, r-square, p-
value and equations of best fit. Note all the eleven
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mathematical functions that were tested for model fit.
Specifically, these are linear, logarithmic, inverse,
quadratic, cubic, power, compound, growth, S-curve,
logistic and exponential models. It can be observed
that all nonlinear functions of best fit were for the
cubic function across all men’s throwing events. This
indicated a decline in performance in the more recent
Olympic Games. Specifically, from 1988 onwards for
the shot put, 2000 for discus, 1988 for hammer and
1976-1980 for javelin. The decline in javelin
performance actually commenced prior to the re-
specified javelin entering competition at the 1988
Olympic.

Table 1. Men’s Throwing Events, Best-fit Functions, R-
square, P-value and Equations.

Event Function | R- p- Cubic Equation of Best Fit
and Square value

Weight Constant bl b2 b3
Shot Put | Cubic .965 <.001 -3.336 3.137 -.131 .002
7.26kg

Discus Cubic 972 <.001 5.211 6.746 -.236 .003
2kg

Hammer | Cubic .922 <.001 30.876 1.704 .141 -.005
7.26kg

Javelin Cubic .850 <.001 | -14.604 13.944 -.617 .009
800g
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Figure 1. The cubic function line of best fit and actual data
point for men’s discus. Note the X-axis in years and Y-axis
in metres.

To highlight the trends the cubic function line of best fit and
actual data points for men’s discus from 19936-2012 are
displayed in figure 1, which covers eighteen Summer
Olympic Games. Table 2 indicates the model fit based on
each Olympic year, actual performance, predicted
performance and residual error.

Table 2. Men’s Discus Data in terms of Olympic year, actual
performance, predicted performance and residual error.

Performance Predicted Residual Error

Year ‘
(m) (m) (m)

——

1936 49.69 47.14 2.54
1948 51.78 53.66 1.88
1952 54.03 55.57 1.54
1956 55.19 57.35 2.16
1960 58.12 58.99 87
1964 60.34 60.50 16
1968 63.59 61.88 1.70
1972 63.77 63.12 64

1976 66.47 64.23 2.23
1980 66.45 65.21 1.23
1984 66.12 66.05 06

1988 67.89 66.75 1.13
1992 64.73 67.32 2.59
1996 67.27 67.76 49
2000 68.66 68.06 59

2004 67.86 68.22 36
2008 68.14 68.25 11
2012 68.16 68.14 019

4. DISCUSSION

The best fit mathematical functions for men’s
throwing events were the cubic function with high
R-square values (0.850-.972), very significant p-
values (<.001) resulting in good model prediction
and low residual error. The shot put, discus and
hammer where there were no re-specifications for
the implements predicted performance decrements
for these events and which had started to occur from
1988 onwards for the shot put, 2000 for discus, 1988
for hammer and 1976-1980 for javelin. It is
interesting to note the world records for the shot put
occurred in 1990 at 23.12m, discus 1986 at 74.08m,
hammer in 1986 at 86.74m and javelin in 1996 at
98.48m. The change in specifications of the men’s
javelin in 1986 would suggest a significant decline
in performances however the decline as suggested
by this analysis commenced in 1976-1980 and prior
the new javelin being introduced?

So what plausible explanations can be theorized
for the current trend of declining throwing
performance? What will occur in 2016 Rio de
Janeiro Summer Olympic Games in Brazil and are
we getting citius, altius and fortius or “faster, higher,
and stronger?” if the throwing events are based on
strength, force and power production the future
trends based on table 3 indicates reductions in all
men’s throwing events and might this indicate citius,
altius and infirmius or “faster, higher, and weaker?”

Table 3. The predicted trends for the shot put, discus,
hammer and javelin performances for the 2016 Summer
Olympic Games.

Event and Weight Actual/Predicted Predicted Performance
2012 2016
Shot Put 7.26kg 21.66M/21.29m 21.27m
Discus  2kg
68.16m/68.14m 67.89m
Hammer 7.26kg 79.55m/80.27m 79.51m
Javelin  800g 84.40m/84.97m 83.67m
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Three predominant explanations can provide some
insights as to these declining trends in the men’s
throwing events. Specifically,

1. More vigilance concerning drugs in sport
therefore dampening the enhanced performance
effect of anabolic androgenic hormones. Drug
testing by the IAAF is now undertaken in
competition testing and out of competition testing
and to have a world record ratified by the IAAF the
application form has a section indicating the athlete
was drug tested at the time of competition and that
the athlete has passed the test, that is no adverse
findings (IAAF, 2014). The normal suspension/ban
for first offence anabolic androgenic hormones is
two year. A second offence of this kind results in a
life ban. If found positive all performances, monies
paid by IAAF, awards and prizes are forfeit so the
punitive outcomes can very significant and are
thought to act as a strong deterrent to taking
prohibited substances on the World Anti-Doping
Agency (WADA, 2014) list.

2. Fewer athletes are undertaking the throwing
events. In Australia fewer athletes are taking up
throwing events as other sports compete for the
limited talent pool based on Australia’s small
population. The Athletics Australia data of permit
competitions and ranked athletes performances to be
evaluated each Athletic season and indicate that in
Australia this is a problem Athletics Australia
(2014).

3. The source population providing the sample of
potential throws athletes in Australia in terms of
motor fitness abilities is getting smaller in terms of
motor fitness abilities and thus fewer capable
athletes to select from within source population.
This appears to be a result of Australia’s increasing
overweight and obesity epidemic for males 18 years
and over, which is currently estimated at 2011-12 to
be 70% and females at 56% (ABS, 2014). The age
of male high performance throwers is usually
between 20-35 years. These overweight/obesity rates
have increased by five and six percent respectively,
when compared to the 1995 results. “People being
overweight or obese may have significant health,
social and economic impacts, and is closely related
to lack of exercise and to diet,” (ABS, 2014). The
carry-over effect is reduced motor fitness of which
strength is a component and as a consequence
reduced performances.

5. CONCLUSIONS

The predictions may indicate a slightly modified
Olympic motto from citius, altius and fortius to
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citius, altius and infirmius or “faster, higher and
weaker?” Predicting performances of athletes at
future Olympic Games based on past Olympic Game
performances for the four Athletic throwing events
indicates good  predictions, if  somewhat
disconcerting in term of the predicted declines in
performance across all these event. It is important to
highlight these declines might be attributable to
three factors, that are, more vigilant drug testing,
punitive sanctions for adverse drug tests, the decline
in participation in the throwing events and finally a
decline in the general motor fitness, especially
strength in the source population from which
throwing athletes will emerge.
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Abstract

The prediction of future athletic performance is a recurring theme as sports scientists strive to understand the
predicted limits of sports performance. Predictive models based on Olympic data for athletics have derived
some accurate predictions of performance in the 2000, 2004, 2008 and 2012 Olympic Games. The aim of this
research was to develop predictive models using performance data of the first three athletes competing in the
finals of the women’s shot put, discus, hammer and javelin at the Summer Olympic Games from Berlin 1936
to London 2012. The approach utilised regression-curve estimation using IBM SPSS Statistics Version 22
statistical software and by evaluating fit to linear, logarithmic, inverse, quadratic, cubic, compound, power,
sigmoidal, growth exponential and logistic functions. The mathematical models varied represented very good
predictors of past, current future throws performance in the four field events based on R? (0.850 - 0.972), p-
values (<.001) and unstandardized residuals or error. The non-linear function of best fit for events was the
cubic function, which indicated a decrease in performance in recent Olympics and predicted this performance
decline would occur at the 2016 Olympic Games in Rio de Janeiro. The reasons for the current and predicted
declines were more vigilance concerning drugs in sport and therefore dampening the enhanced performance
effect of anabolic androgenic hormones, fewer athletes are undertaking the throwing events as a completive
sport and changes in the source population providing the sample of potential throws athletes in Australia in
terms of motor fitness abilities are getting smaller in terms of motor fitness abilities and thus fewer capable
athletes exist to select from within source population. The good predictive models may be due to a longer
timeframe data set to develop substantive predictive models, a timeframe able to detect phylogenetic trends in
human athletic performance. The predictions may indicate a slightly modified Olympic motto from citius,
altius, fortius to citius, altius and infirmius or “faster, higher and weaker?”

Keywords: Olympic Games, Throwing Event, curve estimation, nonlinear regression, predictive
mathematical modelling
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1. INTRODUCTION

The prediction of future athletic performance by
athletes at the Olympic Games is a recurring theme
as well as forming the basis for some stimulating
discussions on the limits of human performance.
Mathematics in sport and exercise and sports science
are based on the principles of description and more
importantly prediction. The ability to make
substantive and accurate predictions of future elite
level sports performance indicates that such
approaches reflect substantive sport science. Often
these predictions are purely speculative and are not
based upon any substantial evidence, rather they are
based on the belief that records are made to be
broken and that performances based on past
experiences must continue to improve over time.
The accessibility of data in the form of results from
Olympic Games, world records and world best
performances in a specific year allows the analysis
of performances in any number of events. From
these analyses, changes in performance over time
can be observed and predictions of future
performance can be made utilising the process of
mathematical extrapolation and interpolation.

A number of researchers have attempted to predict
future performances by deriving and applying a
number of mathematical statistical models based on
past performances in athletics. Prendergast (1990)
applied the average speeds of world record times to
determine a mathematical model for world records.
The records or data used in the analysis spanned a
10 year period. Following his analysis, Prendergast
(1990) raised the question of whether any further
improvements can be expected or if the limits of
human performance have been reached. The sports
of athletics (Heazlewood and Lackey, 1996;
Heazlewood, 2011, 2013a, 2013b) and swimming
(Lackey and Heazlewood, 1998) have been
addressed in this manner. The knowledge of future
levels of sporting performance has been identified
by Banister and Calvert (1980) as beneficial in the
areas of talent identification, both long and short
term goal setting, and training program development
based on the next level of expected future
performance. In addition, expected levels of future
performance are often used in the selection of
national representative teams where performance
criteria are explicitly stated in terms of athletics
times and distances for example as required entry
standards at Olympic Games (International Olympic
Committee (I0C), 2014).

Péronnet and Thibault (1989) postulate that some
performances, such as the men's 100m sprint is
limited to the low 9 seconds, whereas, Seiler
(referred to by Hopkins, 2000) envisages no limits
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on improvements based on data reflecting
progression of records over the last 50 years.
According to Seiler improvements per decade have
been approximately 1% for sprinting, 1.5% for
distance running, 2-3% for jumping, 5% for pole
vault, 5% for swimming and 10% for skiing for male
athletes, whereas female sprint times may have
already peaked. The differences for males and
females it is thought to reflect the impact of
successful drugs in sport testing on females.
Previous derived curve estimations that significantly
fit the data have also displayed interesting findings
as no one curve fits all the data sets. Different events
displayed different curves or mathematical functions
(Lackey & Heazlewood, 1998) of best fit. For the
women’s freestyle events the 50m was inverse,
100m cubic, 200m sigmoidal, 400m cubic and 800m
sigmoidal.

In the women’s events the mathematical functions
were 100m cubic, 400m sigmoidal, long jump
inverse and high jump displayed four functions
(compound, logistic, exponential and growth). The
curves that fit the data have also displayed
interesting findings as no one curve fits all the data
sets. This may indicate that different events are
dependent upon different factors that are being
trained  differently or factors underpinning
performance evolving in slightly different ways.
This has resulted in different curves or mathematical
functions that reflect these improvements in training
or phylogenetic changes over time. However, at
some point in the future when time catches-up with
the actual performance, then how accurately the
predictive models reflect reality can be assessed.
However, the ability to predict performances at the
2000, 2004, 2008 and 2012 Olympic Games for the
men’s and women’s 100m, 400m, long jump and
high jump, based on the 1924 to 2012 data, was very
accurate  with low percentage error. The
International Olympic Committee (10C, 2014) has
produced descriptive data and descriptive graphical
analysis to indicate trends in World records for the
women’s throwing events however not based on
mathematical predictive modelling.

The dominant and important research question is,
can mathematical models based on nonlinear curve
estimation, which have proven to be very successful
in fitting and predicting past, current and future
Olympic performances for event finals in athletics
and swimming for women display equal
effectiveness in predicting athletic performances in
the women’s throwing events of the shot put, discus,
hammer and javelin at the Olympic Games, which
are past, current and future performances?

et



2. METHODS

The mean score for the first three placed finalist in
the women’s throwing events which consist of the
shot put, discus, hammer and javelin. The data were
selected from 1936 to 2012 Summer Olympic
Games and provided by the International Olympic
Committee (IOC, 2014) served as the exemplars for
performance in each event for each competitive
year. The data covered eighteen Summer Olympics
for the women’s discus and javelin. The introduction
of women’s throwing at the Summer Olympic
Games events lagged behind the men. Specifically,
the discus and javelin were introduced in 1932, the
shot put in 1948 and the hammer as late as 2000.
These scores served as the data set to derive and test
the predictive models based on curve estimations
and the distances in each event was recorded metres
to the nearest centimetre. The analysis of the
women’s hammer data proved problematic as it has
only been competed at four Olympics, whereas the
shot put has a longer completion history at seventeen
Olympics.

This is a similar method used previously
(Heazlewood & Lackey, 1998; Heazlewood, 2006,
2008, 2013a, 2013b) to curve fit Olympic data for
swimming and athletic events. According to Garson
(2010) curve estimation is an exploratory tool in
model building and model selection, where the best
mathematical model or function is selected to
represent quantitative relationships between an
independent/predictor variable and a
dependent/response variable. The mathematical
solutions and curve estimations were derived using
the IBM SPSS Statistics Version 22 statistical
software (SPSS Inc. 2014).

The most common curve estimation or model fit
approaches are based on the following mathematical
functions (Garson, 2010) and these are linear,
logarithmic, inverse, quadratic, cubic, power,
compound, S-curve, logistic, growth, and
exponential models. In terms of statistical approach
model fit indices are then applied to test the quality
of the model and the general method of determining
the appropriate regression models is represented by
the following steps.

1. Commence with an initial estimated value for
each variable in the equation.

2. Generate the curve defined by the initial values.
Calculate the sum-of-squares (the sum of the squares
of the vertical distances of the points from the
curve).

3. Adjust the variables to make the curve come
closer to the data points. There are several
algorithms for adjusting the variables. The most
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commonly used method was derived by Levenberg
and Marquardt (often called simply the Marquardt
method). Adjust the variables again so that the curve
comes even closer to the points. Keep adjusting the
variables until the adjustments make virtually no
difference in the sum-of-squares.

4. Report the best-fit results and then the precise
values you obtain will depend in part on the initial
values chosen in step 1 and the stopping criteria of
step 5. This means that repeat analyses of the same
data will not always give exactly the same results.
To investigate the hypotheses of model fit and
prediction, the eleven regression models were
individually applied to each of the athletic events.
The regression equation that produced the best fit for
each event, that is, produced the highest coefficient
of determination (abbreviated as R?), was then
determined from these eleven equations.

5. The specific criteria to select the regression
equation of best were the magnitude of R? the
significance of the coefficient of determination (R?)
is a measure of accuracy of the model used. A
coefficient of determination of 1.00 indicates a
perfectly fitting model where the predicted values
match the actual values for each independent
variable (Garson, 2010; Hair et al., 2006; Norusis,
1993). Where more than one model was able to be
selected due to an equal R? the simplest model was
used under the principle of parsimony, that is, the
avoidance of waste and following the simplest
explanatory model, as well as the statistical
significance of the analysis of variance, the alpha or
p-value and size of residuals or error in predictions.
6. Some caution is required to not over interpret a
high R? as it does not mean that the researcher has
chosen the equation that best describes the data. It
also does not mean that the fit is unique - other
values of the variables may generate a curve that fits
just as well.

It should be noted the women’s shot put, discus and
hammer have not changed dramatically in
specification concerning weight, area and volume
making comparisons across Olympic year possible.
Specifically, the shot is 4kg, discus 1kg, hammer
4kg and javelin 600g.

Similar to the men’s javelin, which was respecified
in 1986, the women’s javelin was respecified in
1999 to change its aerodynamics to reduce lift,
increase the downward pitching moment, and to
bring the nose down earlier, which reduced the flight
distance by around 10%. Although it should be
emphasised that prior to the 1999 respecification
women were only throwing in the 66 - 71 metre
range and not the 100 metre plus throws exhibited
by the top male javelin throwers.
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3. RESULTS

The results as illustrated in table 1 indicates each
women’s throwing events, best-fit functions, r-square,
p-value and equations of best fit. Note all the eleven
mathematical functions that were tested for model fit.
It can be observed that all nonlinear functions of best
fit were for the cubic function across all women’s
throwing events with a significant quadratic function
for the javelin and a non-significant value for the

hammer due to the

low number of cases. This

indicated a decline in performance in the Olympic
Games from 1988 onwards for the women’s shot put,
discus and javelin. The hammer performances, like

many new events, continue to improve.

Table 1. Women’s Throwing Events, Best-fit Functions,
R-square, P-value and Equations.

Event Function R- p- Cubic Equation of Best Fit
and Square value

Weight Constant bl b2 b3
Shot Put | Cubic 918 <.001 -6.609 2.653 -.064 .000
4kg

Discus Cubic .925 <.001 -1.064 5.209 -.035 -.003
1kg

Hammer | Cubic 973 Ns -200.5 20.052 -.360 .00
4kg Quadratic 972 n=4

Javelin Cubic .983 <.001 | -.647 5.491 -.070 -.002
600g Quadratic .983

Figure 1. The cubic function line of best fit and actual data
point for women’s javelin. Note the X-axis in years and Y-
axis in metres.
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To highlight the trends the cubic function line of best fit and
actual data points for women'’s javelin from 19936-2012 are
displayed in figure 1, which covers eighteen Summer
Olympic Games. Table 2 indicates the model fit based on

each Olympic year, actual
performance and residual error.

performance,

Table 2. Women’s Discus Data in terms of Olympic year,
actual performance, predicted performance and residual
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Year Performance Predicted Residual Error
(m) (m) (m)
1936 43.42 38.55 4.87
1948 43.81 48.32 -4.51
1952 50.08 51.16 -1.08
1956 51.51 53.78 -2.27
1960 54.40 56.19 -1.79
1964 58.62 58.39 .23
1968 59.44 60.37 -.93
1972 62.12 62.13 -.01
1976 64.87 63.68 1.19
1980 67.57 65.02 2.55
1984 68.57 66.14 2.43
1988 70.76 67.04 3.72
1992 67.82 67.73 .09
1996 66.15 68.20 -2.05
2000 67.53 68.45 -.92
2004 67.21 68.49 1.28
2008 69.44 68.30 1.14
2012 66.54 67.90 -1.36

4. DISCUSSION

The best fit mathematical functions for women’s
throwing events were the cubic function with high
R-square values (0.918 - .983), very significant p-
values (<.001) resulting in good model prediction
and low residual error, except for the new women’s
hammer was nonsignificant due to low n of cases.
The shot put and discus where there were no re-
specifications for the implements predicted
performance decrements for these events. The
respecified javelin also indicted performance
decline. The declining performances started to occur
from 1988 for shot, discus and javelin. The new
event hammer has displayed continuous
improvement from 2000-2012 and continued
improvement is predicted into the future. It is
interesting to note the world records for the shot put
occurred in 1987 at 22.63m, discus in 1988 at
76.80m, hammer in 2011 at 79.42m and expectantly
in the javelin in 2008 at 72.28m. The change in
specifications of the women’s javelin in 1999 would
suggest a significant decline in performances
however the decline as suggested by this analysis
commenced in 1988 at the Olympic level and prior
the new javelin being introduced.

So what plausible explanations can be theorized
for the current trend of declining throwing
performance? What will occur in 2016 Rio de
Janeiro Summer Olympic Games in Brazil and are
we getting citius, altius and fortius or “faster, higher,
and stronger?” if the throwing events are based on
strength, force and power production the future
trends based on table 3 indicates reductions in all
men’s throwing events and might this indicate citius,
altius and infirmius or “faster, higher, and weaker
except for the hammer?”
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Table 3. The predicted trends for the women’s shot put,
discus, hammer and javelin performances for the 2016
Summer Olympic Games.

Event and Weight Actual/Predicted Predicted Performance
2012 2016

Shot Put 4kg 20.47m/19.31m 18.59m

Discus  1kg 67.96m/64.54m 62.35m

Hammer 4kg 77.63m/77.46m 78.44m

Javelin  600g 66.54m/66.24m 64.61m

Three predominant explanations can provide some
insights as to these declining trends in the men’s
throwing events. Specifically,

1. More vigilance concerning drugs in sport
therefore dampening the enhanced performance
effect of anabolic androgenic hormones. Drug
testing by the IAAF is now undertaken in
competition testing and out of competition testing
and to have a world record ratified by the IAAF the
application form has a section indicating the athlete
was drug tested at the time of competition and that
the athlete has passed the test, that is no adverse
findings (IAAF, 2014). The normal suspension/ban
for first offence anabolic androgenic hormones is
two year. A second offence of this kind results in a
life ban. If found positive all performances, monies
paid by IAAF, awards and prizes are forfeit so the
punitive outcomes can very significant and are
thought to act as a strong deterrent to taking
prohibited substances on the World Anti-Doping
Agency (WADA, 2014) list. It is interesting to
emphasise the actual winner of the women’s shot put
in London 2012 tested positive to an anabolic
androgenic  steroid and was  subsequently
disqualified.

2. Fewer athletes are undertaking the throwing
events. In Australia fewer athletes are taking up
throwing events as other sports compete for the
limited talent pool based on Australia’s small
population. The Athletics Australia data of permit
competitions and ranked athletes performances to be
evaluated each Athletic season and indicate that in
Australia this is a problem Athletics Australia
(2014).

3. The source population providing the sample of
potential throws athletes in Australia in terms of
motor fitness abilities is getting smaller in terms of
motor fitness abilities and thus fewer capable
athletes to select from within source population.
This appears to be a result of Australia’s increasing
overweight and obesity epidemic for males 18 years
and over, which is currently estimated at 2011-12 to
be 70% and females at 56% (ABS, 2014). The age
of male high performance throwers is usually
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between 20-35 years. These overweight/obesity rates
for women have increased by five and six percent
respectively, when compared to the 1995 results.
“People being overweight or obese may have
significant health, social and economic impacts, and
is closely related to lack of exercise and to diet,”
(ABS, 2014). The carry-over effect is reduced motor
fitness of which strength is a component and as a
consequence reduced performances.

4. The continued improvement in the women’s
hammer normally occurs when a new event is
introduced as athletes improve their technical
understanding of the event combined with more
event specific training. This observation is relevant
when you consider the rapid improvements in the
women’s pole vault when it was a new event.

5. CONCLUSIONS

The predictions may indicate a slightly modified
Olympic motto from citius, altius and fortius to
citius, altius and infirmius or “faster, higher and
weaker” when interpreting the trends in the women’s
shot put, discus and javelin. Predicting performances
of athletes at future Olympic Games based on past
Olympic Game performances for the shot put, discus
and javelin Athletic throwing events indicates good
predictions, if somewhat disconcerting in term of the
predicted declines in performance across all these
three event. Note the 2008 world record in the
women’s javelin might be a data outlier and not
representing the overall trend. It is important to
highlight these declines might be attributable to
three factors, that are, more vigilant drug testing,
punitive sanctions for adverse drug tests, the decline
in participation in the throwing events and finally a
decline in the general motor fitness, especially
strength in the source population from which
throwing athletes will emerge. The increasing
performance in the hammer probably indicates
athletes are progressively mastering the technical
and specific training demands of the new event.
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Abstract

The issue of ‘tanking’ is a growing trend in the National Basketball Association (NBA) and is often the topic
of debate. ‘Tanking’ is when a team lose games on purpose in order to improve their draft position. Previous
research has been conducted on the incentives teams have to win games under the current NBA weighted-
lottery system. The research has suggested that non-playoff bound teams do not have an incentive to win
games under the current draft system, leading to the system being heavily criticised. With this in mind, the aim
of this research was to implement a draft system that would reward non-playoff bound teams for winning
games that are deemed to be ‘unimportant’ with respect to making the playoffs. The calculation of
‘unimportance’ is based on the probability of a team making the playoffs after the completion of each game of
the season. A variety of approaches were then examined to help derive a score for ‘unimportant’ and unlikely
wins. The results found evidence that non-playoff bound teams would have an incentive to win games late in
the season under this alternative draft system. As well as exploring incentives to win, we will explore the
attractiveness of this system as well as evaluating past draft picks to examine the reward teams could have
obtained under this alternative draft system.

Keywords: NBA, Draft, Probability, Importance, Incentives

with the worst overall record in order to receive the
LINTRODUCTION highest odds in the lottery, and therefore the best
The NBA draft system is designed to assist low opportunity of obtaining the number one draft
ranked teams who are unable to qualify for the selection.
playoffs. The draft enables these teams to have the It is often a topic of debate about whether or not
best opportunity to improve their roster by allowing tanking is the only way to rebuild a team (Michael,
them first choice of players entering the league. The 2013; Spencer, 2013; Ziller, 2013), and in recent
current draft system uses a lottery to determine the years has led the public and media to speculate about
first three draft selections with the remaining draft which teams could possibly tank during a season
order being determined by the inverse final season (Burton, 2013). However, Kertes (2003) explained
standings. The fourteen teams who do not qualify for how the Detroit Pistons used smart trading to bring
the playoffs are allocated a probabilistic chance of in players who would assist the team in winning the
receiving the number one draft pick based on their 2004 NBA Championship. Yet, since it may be
end of season standing. This process is known as a difficult for teams to complete trades, teams may

weighted-lottery system. turn their attention back to the draft and thus the
Whilst this process has been used since 1990, it has incentive to lose games becomes a factor.

not always been met with great support from the Research has been conducted in the past on the
public and media as the issue of ‘tanking’ has arisen. effect that tanking has on the league. Taylor and

‘Tanking’ is when a team loses games on purpose in Trogdon (2002) assessed the performance of teams
order to improve their lottery odds for the draft. This following changes to the draft system by the NBA.
issue has arisen from the fact that a team must finish They found that under the current weighted-lottery
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system, non-playoff bound teams are two times
more likely to lose games compared to teams headed
for the playoffs. Walter and Williams (2012)
assessed the issue of tanking to determine if teams
do tank and the benefit they may gain. By analysing
games played between non-playoff teams late in the
season, they found that non-playoff bound teams
were more inclined to tank in order to improve their
draft position. They also found that if a team wins
the lottery and gains the first draft selection, the
attendance will increase by 5% for a period of five
years after the draft. The incentive to tank has also
been explored by Tuck and Whitten (2012), who
found evidence to suggest that teams will tank when
the weighted-lottery system is used.

An alternative draft system that has been suggested
was first described by Gold (2010). Gold explained
that it may be possible to create a draft system that
eliminates the needs for teams to tank whilst giving
fans a reason to continue to cheer for their team. The
system used mathematical elimination to determine
the draft order in the National Hockey League
(NHL). After a team has been mathematically
eliminated from the playoffs, their win/loss record
was recorded and used to determine the selection
order for the upcoming draft. The results found that
supporters would have a reason to continue to cheer
as their team was still competing for the number one
draft late in the season.

The issue of tanking is routinely discussed in the
Australian Football League (AFL). This was
identified by Bedford and Schembri (2006), who
suggested a probabilistic model to give teams who
have been eliminated from finals contention an
incentive to win games late in the season. This
system was based on measuring the unimportance of
a game by altering the importance of a point formula
described in Morris (1977). The system would
allocate a Draft Point Reward (DPR) to non-finals
teams who would win games that were deemed to be
unimportant. The cumulative sum of the DPR,
known as the DScore, was then used to determine
the final draft order. The research concluded that
non-finals bound teams had an incentive to win
games late in the season as they were competing for
the number one draft selection. Taking this into
consideration, the focus of this paper is to implement
the DScore system into the NBA and evaluate the
incentives that non-playoff bound teams have to win
games late in the season.

2.METHODS

In this section, the methodology behind the DScore
system will be explained. In order for the system to
be successfully implemented into the NBA, some
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adjustments were required. These adjustments are
explained throughout this section.

At its heart, the DScore system is designed to reward
non-playoff bound teams for winning games late in
the season that are deem to be ‘unimportant’. As
mentioned before, the reward is in the form of a
Draft Point Reward (DPR) with the team who
finishes the season with the highest cumulative
DPR, known as the DScore, receiving the number
one draft selection.

Like the original DScore system, the NBA system is
based on Carl Morris’ work on the most important
point in tennis (Morris, 1977). Morris defined the
most important point in tennis as the difference
between two conditional  probabilities:  the
probability of a server winning a game given they
win the next point, minus the probability of a server
winning the game given they lose the next point.
However, we are interested in games in a season
instead of points in a game. The unimportance of a
game is then found after calculating the importance
of a game.

The NBA DScore system has similar characteristics
to the original system. These include no DPR being
given in defeat so teams must win games in order to
receive a reward; the DPR being awarded for the
entire season minus the first game of the season; and
teams that have qualified for the playoffs are
ineligible to receive a reward. However, in the
original system, the DPR for each team was
calculated at the conclusion of each round of the
season. This is not the case for the NBA system as
there are no actual rounds in the season. Instead, the
DPR is calculated for each team at the conclusion of
each game g.

In order for the DPR to be calculated, there are a
number of features that have to be determined first.
The process includes determining the conference
standing after each game g, determining the required
number of wins for each team to make the playoffs,
calculating the probability of each team making the
playoffs after each game, and finally determining the
importance and unimportance of the games.

i Conference standings

The original AFL DScore system used the ladder at
the completion of round r to determine various
features of the probabilistic model. As explained in
the previous section, there are no actual rounds in
the NBA so there are no conference standings
available for all teams at the conclusion of game g.
Instead, there are two conferences, the East and the
West, with each conference having their own
standings available at the conclusion of each day of
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the season. To rectify this, hypothetical standings at
the conclusion of game g for each conference were
used. These standings were constructed similar to
the normal standings but the total points differential
was used as a tie-breaker for when two or more
teams had the same win/loss record.

ii. Number of wins to make the playoffs

In the NBA, the top eight teams from each
conference at the end of the season advance to the
playoffs where they compete for the NBA
championship. Since there is a top eight from each
conference, the DScore system has to be split to
accommodate this. Therefore, each conference
would have its own required number of wins to
make the playoffs. Bedford and Schembri (2006)
explained that there were two possible ways of
calculating the required number of wins to make the
playoffs. This was either by using the final season’s
required wins and imposing them retrospectively
onto the completed season, or using a projected
requirement during the season. Since the attraction
of the system is that teams will know the reward of
winning, the projected wins, or ParWins, is used
during the season. The required number of wins for
team i after game g is defined as ParWins; (g). This
is shown in (1).

(TWSH" ranked team (g)) x82

ParWins;(g) = max( o

- TM(g>,0>(1)

The total number of wins for team i after the
completion of game g is defined as TW;(g). Equation
1 will return a result equal to zero if it finds that
team i has already qualified for the playoffs. If this is
not the case, the equation will return a positive
number. It should be noted that this equation
incorporates a rounding function which will round
the projected total wins of the eighth placed team up
or down to the nearest integer.
iii. Probability of making the playoffs

The basis behind determining the probability of team
i making the playoffs is the binomial distribution.
The probability of making the playoffs for team i
after game g is defined as PR; (Playoffs |g).
Incorporating the cumulative binomial distribution,
with x= number of successes, n = number of trials
and p = probability of success, the probability of
making the playoffs is defined as:
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Pri(Playoffslg) =
1(ParWinsl(g):0) +
1((ParWinsl(g)>0)n(ParWinsi(g)5827g)}[1 - B(ParWinsi(g) —-1;82—

9,p)] )

Note(2) includes an indicator function 1g; which
takes the value of 1 if condition a is true and O if
condition a is not true. To keep the system simple,
the probability of success used throughout this paper
is equal to 0.5.

iv. Unimportance of a game
As stated previously, the unimportance of a game
can be found after calculating the importance. The
importance of a game is defined as the difference
between two conditional probabilities: the
probability of team i making the playoffs given they
win the next game, minus the probability of team i
making the playoffs given they lose the next game.
This difference can be found by manipulating
equation 2. The unimportance for team i after game
g, defined as U;(qg), is then calculated by one minus
the importance of the game. A detailed breakdown
of the importance calculations can be found in
Bedford and Schembri (2006).

V. Moderator variable
In the original AFL DScore system, it was
concluded that there were some weaknesses to the
model. These weaknesses included the top draft pick
being frequently awarded to teams who won a string
of games late in the season. This meant that teams
who finished in positions ninth to twelfth received a
majority of the high draft picks. To counteract this,
Bedford and Schembri (2010) introduced a
moderator variable to improve the system. This
variable was a scaling factor, which would allocate
the full DPR to teams positioned at the bottom of the
conference standings. The conference standing for
team i after the completion of game g is defined as
CSi(g). The moderator variable is then defined as the
following:

[(CSi(f)—S)] 3)

Yi(9) = Lcsi9)29)
This equation will return a value equal to zero if it
finds that team i is positioned in the top eight of their
conference. If this is not the case, then it will return
a value equal to team i’s conference standing minus
eight divided by the number of teams not in the top
eight. For example, if team i is positioned eleventh
in their conference, then their scaling factor y will be

'



(11-8) _

equal to 0.429. This would then be
multiplied onto the DPR for game g.

Vi. Calculating the Draft Point Reward

The Draft Point Reward (DPR) is simply the
probability of not making the playoffs multiplied by
the unimportance of the game and the moderator
variable. As mentioned previously, teams have to
win in order to receive the reward so an indicator
function is included in the equation. The DPR for
team i at game g can then calculated using the
following equation:

DPRi(9) = L wins game g3 * Ui(9) - (1 — Pry(Playoffs|g)) - vi(g)(4)

The total Draft Score (DScore) for team i after game
g is then defined as the sum of all DPR:

DScore;(g) = !lg=2 DPR;(k), g €{2,...82} (5

3.RESULTS

The DScore system was trialled on seven seasons
between 2005 and 2012. The results will examine
findings from these seasons and assess how teams
performed during the 2008-09 season. The
importance of games will be examined as well as the
competition for the number one draft selection.

As mentioned previously, the equal probability
model (p=0.5) was used in the calculations of the
DScores. Since the DScores from the two
conferences had to be merged at the conclusion of
the season to determine the draft order, it had to be
confirmed that the two groups were equal. It was
found that there was no significant difference
between the two conferences (P=0.154).

The results across the seasons showed that lower
ranked teams generally benefit from the system as
they receive a majority of the top five draft
selections. This suggests that the system is working
correctly and only allocating a reward to low ranked
teams who win games of unimportance. The
allocation of top five draft selections is shown in
Figure 1.
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Figure 1: Distribution of Top 5 picks vs.
Conference Position

The ideal situation for the NBA DScore system
would be to have lower ranked teams competing for
the number one draft selection right up to the
conclusion of the season. This would result in the
teams continuing to have an incentive to win as
many games as possible despite being eliminated
from playoff contention. This competition for the
top draft selection is shown in Table 1. In two of the
seasons, there were at least two teams still
competing for the first draft selection with one game
remaining. However, in all seven seasons, there are
at least two teams competing with five games
remaining. This competition suggests that teams
would have an incentive to continue to win games
late in the season as there is a valuable reward
available.

1 Game Remaining 5 Games Remaining

East West Total East West Total

2005-06 0 2 2 0 3 3
2006-07 0 1 1 0 2 2
2007-08 0 1 1 0 2 2
2008-09 1 1 2 1 2 3
2009-10 0 1 1 0 2 2
2010-11 0 1 1 0 3 3
2011-12 0 1 1 0 2 2
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Table 1: Teams in Competition for Top Pick with
1 and 5 games remaining

i. East vs. West

An interesting result that arose was that the highest
DScore in each of the seven seasons came from a
team from the Western conference. Of the 35 top
five picks, only ten were awarded to teams from the
East. This would suggest that the system is giving
the Western conference a distinct advantage over the
Eastern conference. However, this may not be the
case when the total wins of each conference are
assessed. In all but one season, teams from the West
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won more combined games than the East. In Table
2, the inter-conference wins (wins against teams
from the other conference) for each conference
across the seven seasons are shown. It can be seen
that the West won more inter-conference games in
all but one season. This result would explain why
the West were awarded a majority of the picks as the
DScore system is designed to reward winning and
teams from the West are winning more games than
teams from the East.

East West
2005-06 198 252
2006-07 193 257
2007-08 192 258
2008-09 231 219
2009-10 204 246
2010-11 189 261
2011-12 114 156

Table 2: Total number of inter-conference wins
ii. 2008-09 NBA season

The 2008-09 season presented the best possible
example of the DScore system working successfully
in the NBA. In this season, there were two teams
competing for the number one draft selection with
one game remaining. The teams were the
Washington Wizards from the East and the
Oklahoma City Thunder from the West. The game-
by-game results for the top six DScore teams can be
found in Figure 2.

20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

OKC, 18.1912
AS, 17.9777
LAC, 15.1075
IND, 15.0792

DScore

1 5 9131721252933374145495357616569737781
Game g
Figure 2: Competition for top pick during the
2008-09 NBA season

Figure 2 shows the number one draft selection
changing teams numerous times throughout the
season, particularly at the beginning. At the
conclusion of the season, the competition came
down to Washington and Oklahoma City. There was
also strong competition for the third overall pick,
with just 0.2734 separating picks three to five. These
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results are similar to the original AFL DScore
system, which showed at least two teams competing
for the top pick with a number of teams also in
competition for the third draft selection.
iii. Importance

An interesting result that arose from Bedford and
Schembri (2006) was that teams who finished in the
top two or bottom three had their most important
games in the early rounds of the season. Of interest
to us was whether or not this result would replicate
in the NBA. In particular, of interest was comparing
the importance between the two conferences. To
complete this, the maximum importance was found
for each team in each of the seven seasons. The
game in which the maximum importance occurred
was recorded along with each team’s end of season
conference standing. The importance was then
sorted according to the conference standing and the
mean and standard deviation were found. The results
are shown in Figure 3.
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Figure 3: Error bars for maximum game of
importance by conference position

A notable result from Figure 3 was that the top two
teams in the East had their most important games
within the first ten games of the season. This is
different to the two top teams from the West, who
had their most important games towards the halfway
mark of the season. A more intriguing result is that
the bottom teams in the West had their most
important games at the commencement of the season
compared to teams from the East, who’s occurred at
the halfway mark of the season. These results
suggest that if a team from the West loses too many
games early in the season, then their probability of
making the playoffs decreases dramatically as the
required number of wins (ParWins) increases
quickly as teams above them continue to win. It also
suggests that bottom teams in the West had more
unimportant games than the East throughout the
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season. This would provide an explanation as to why
teams from the West received a majority of the top
five picks as they have more unimportant games and
are winning more games than the East. It was also
confirmed that the positions between the two
conferences are significantly different (P<0.0000).

4. DISCUSSION

Thought it is difficult to measure the overall effect
of the DScore system on the NBA, there is evidence
to suggest that the system does eliminate the
incentive for teams to tank. The results showed that
there is competition for the number one draft
selection in all seven seasons assessed, meaning that
teams have to continue to strive for success even if
they have been eliminated from playoff contention.
However, it is difficult to determine how teams may
have performed in later seasons if they had in fact
been awarded an alternative draft selection under the
DScore system. If players were selected in the same
order as the 2008 NBA draft, then it could
hypothetically be suggested that Derrick Rose now
plays for Minnesota or Kevin Love now plays for
Memphis. However, we cannot say this with
confidence as we are unsure of how this system
would have affected a team’s draft preparation and
how it would affect which played is selected.

One of the results that arose from the system was
that there were multiple teams who would finish a
season with a DScore equal to zero. This was
because those teams spent all, or a majority, of the
season in the top eight of their conference. Whilst
this seems reasonable, it means that when
determining the draft order, there were multiple
teams with the same DScore. One of the ways that
this could be amended is by using the inverse final
season standings as a tie-breaker with the team who
finished higher in the standings receiving the higher
draft pick. An alternative tie-breaker would be to
implement the current weighted-lottery system onto
the fourteen highest DScore teams.

i. Incentive to win

The key idea about the implementation of the
DScore system into the NBA was to eliminate the
incentive to tank and replace it with an incentive to
win. The results from the research have shown that
the system creates an incentive for teams to continue
to win despite having a reduced probability of
making the playoffs. As explained in the results
section of this paper, the number one draft pick was
still undecided late in the 2008-09 season. Going
into the final game of the season, Washington held a
narrow lead over Oklahoma City. On the last day of
the season, Oklahoma City defeated the Los Angeles
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Clippers by 41 points to claim the number one draft
selection. Washington had an opportunity to reclaim
the number one pick but lost to Boston by eight
points. A win under the current weighted-lottery
system would have awarded Washington the fourth
highest lottery odds whilst a win under the DScore
system would have awarded them the first draft
selection. This further emphasises the point that non-
playoff teams do not have an incentive to win under
the current NBA draft system whereas the teams
would under the DScore system.

Results from the implementation of the DScore
system into the NBA have provided evidence that
games played between lower-ranked teams late in
the season can be as competitive as games played
between playoff bound teams. This is evident by the
strong competition for the third overall pick draft in
the 2008-09 season. If teams had known that they
were in competition with each other, then it is
reasonable to assume that the games played between
the teams would have had more meaning to them.
Therefore, whilst teams at the top of the standings
were competing for their playoff position, teams
anchored at the bottom of the standings would be
competing for a high draft position.

ii. Criticism and future work

A criticism that can be direct at the NBA DScore
system is that teams from the Western conference
appear to benefit more than teams from the Eastern
conference. The results showed that teams from the
West received all the number one draft selections
available across the seasons. Whilst this appears to
support the idea that the West is favoured by the
system, it may not be the case when the total number
of wins for each conference is assessed. In the
results section, it was explained that teams from the
West won more total games and more inter-
conference games than the East in six of the seven
seasons. Lower-ranked teams from the West also
had their most important games at the
commencement of the season which results in the
teams having more unimportant games. These two
results coupled together suggest that the lower-
ranked teams from the West were winning more
games of unimportance, and therefore receiving a
high cumulative draft score than teams from the East.
Whilst it is not ideal to have all the number one draft
selections being awarded to the West, this may
simply be a result of the NBA going through a
period of time where the Western conference is
stronger than the Eastern conference.

Throughout the methodology, when the cumulative
binomial distribution was used, the probability of
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success was equal to 0.5 as this was seen as keeping
the system simple. However, this may not accurately
measure the probability that team i has to win game
g. One way to improve this would be to alter the
probability based on how team i is performing
throughout the season. This could be done through
prior probabilities, as described in Stefani and
Clarke (1992). The use of prior probabilities could
lead to an improvement in determining the
probability of team i making the playoffs as the
probability of success would reflect the relative skill
of team i.

In order to completely understand which teams truly
benefit from the DScore system in the NBA, some
simulation could be conducted in the future, as
completed by Bedford and Schembri (2010).
Simulating results for a season 100,000 times may
give us compelling results about which conference
position benefits the most from the system. The
simulation could also provide us with information
about if one conference has an advantage over the
other. However, in order for this simulation to work
correctly, the hypothetical standings would have to
be adjusted to better reflect the actual standings.
This would mean that tie-breakers such as division
leaders or conference record would be used before
the total points differential is assessed.

5.CONCLUSION

In this paper, an alternative draft system for the
allocation of player draft selections in the NBA has
been presented with the aim of eliminating the
incentive for teams to tank. The draft system, known
as the DScore system, was first created by Bedford
and Schembri (2006) and was first trialled in the
Australian Football League (AFL). The system is
designed to reward non-playoff bound teams for
winning games late in the season that are deemed to
be ‘unimportant’. The unimportance of a game was
measured by evaluating the probability of a team
making the playoffs, given they win or lose their
next match. Teams with a reduced probability of
making the playoffs received a higher reward,
known as the Draft Point Reward. The cumulative
sum of the Draft Point Reward, known as the
DScore, was then used to determine the final draft
order.

The implementation of the DScore system into the
NBA provided promising results which included
showing that teams would have an incentive to
continue to win games despite being eliminated from
playoff contention. Evidence was also found that
games played between lower-ranked teams could be
as competitive as games played between playoff-
bound teams late in the season. This is due to the

——

66

fact that teams would be competing against each
other late in the season for the highest DScore and,
therefore, the number one draft selection. This
competition creates the incentive for teams to win as
many games as possible throughout the season. With
this incentive, it means that teams have a reason to
continue to strive for success and also provides
supporters with a reason to continue cheering on
their team despite being eliminated from playoff
contention.
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RECENT ADVANCES IN VIDEO TRACKING TECHNOLOGY

Stuart Morgan

2 performance Research, Australian Institute of Sport

Abstract

It is said that a picture tells a thousand words. At an average of 25 frames per second, and given the ubiquitous
nature of affordable and portable video cameras, video in sport should therefore be able to tell an incredible
amount about performance. Yet, in spite of the fact that a number of commercial providers have employed
video-based ball and player tracking solutions for several years, the use of video tracking technologies remains
in its infancy in Australia, and globally for most non-professional sports. Furthermore, tracking players and
balls in large stadia, equipped with sophisticated camera arrays, represents arguably the simplest environment in
which to track moving objects. Even so, continuous tracking of athletes and balls in team sports remains a
significant challenge.

Further to that, in applied sports science, video sources are frequently suboptimal as they may be from hand-
held cameras in competition, where other objects may occlude athletes, or visibility may be poor. Dealing with
noisy or challenging video data sets is a current area of focus in the broader field of computer vision, and our
work makes use of state of the art methods for localizing athlete positions “in the wild”. Our ambitious aim is to
leverage useful performance profiling data from a wide range of unconstrained data sources. In collaboration
with a range of university partners, we have developed a suite of computer vision solutions for observing and
measuring features of sport performance that are progressively becoming more robust, adaptable, mobile,
timely, and ultimately informative.

In this presentation, we will demonstrate the evolution in our video tracking methods from simple player
position estimates using arrays of fixed cameras, to detecting swimmer stroke rates using hand-held and
unconstrained video sources, as well as some emerging themes in action recognition and performance profiling.
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Abstract

Current methods for the classification of human movement rely on data collected from multiple sensors placed
on different areas of the subject’s body, such as the wrist or hip. These methodologies, whilst proven to be
accurate, are impractical in real world sporting applications as such placement of common wearable sensors is
cumbersome and can introduce additional risk of injury. To overcome this we introduce a classification system
based on data obtained from a single sensor worn between the shoulder blades. Tri-axial accelerometer and
gyroscope data was collected from 76 participants at a frequency of 100 Hz. Each participant performed a total
of eight distinct movements along a circuit, with brief pauses taken between movements to aid movement
distinction. In this paper we use the statistical package R to explore a variety of extractable features which may
be used in the classification process and evaluate them on their efficacy by using a combination of ANOVA
and Lasso. Some of the features tested included; time domain features such as amplitude maxima and minima,
as well as frequency domain features such as bandwidth and spectral density which are extracted by applying
the Fourier Fast Transform (FFT). The selected features were then extracted from a sample of the data which
were pre-processed using 0.5 second, 1 second, and 1.5 second sliding windows respectively, and then
classified by using algorithms such as Random Forest, Support Vector Machines and Logistic Model Tree.
The results of these classifications were then compared, on accuracy of classification and computation time.
We will present the basis for our classification model including selection criteria for feature extraction as well
as the results generated from said classifications.

Keywords: Sport, Movement Classification, Tri-Axial Accelerometer, Feature Extraction, Fourier Fast
Transform, Random Forest, Logistic Regression Tree, Support Vector Machine

A reason at least partially responsible for these
1 INTRODUCTION improvements  relates to the considerable
Objective measurement of human movement is developments that have occurred in wearable
essential for understanding the physical and tracking device technologies. Wearable tracking
technical demands related to sports performance devices that integrate multiple sensors (global
(Aughey and Falloon, 2010). It is also important in positioning system (GPS), heart rate, accelerometer,
evaluating the effectiveness of training programs gyroscope and magnetometer) into a single, versatile
designed to increase sports performance as well as unit worn on the body are now readily available
those targeting both the prevention and rehabilitation (Carling et al., 2009). To date, the majority of
of injury (Neville et al., 2010). Fundamental to research has focused on the GPS sensors contained
furthering this understanding is the need to within these devices and their ability to measure
accurately collect specific information relating to the basic components of human movement, such as
type, intensity and frequency of movements speed, distance travelled, and the number of high-

performed (Carling et al., 2009). Consequently, intensity efforts (i.e., accelerations) (Cummins et al.,
techniques for undertaking movement analysis in 2013). However, more recently it has been shown
sports have improved substantially in recent years. that a more detailed analysis of human movement

can be obtained using the accelerometer sensor
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(Ermes et al., 2008). Specifically, different types of
movements can be classified and distinguished
based on their accelerometer features.

Previous research have positioned these devices on
different areas of the body, including the wrist (Long
et al., 2009), upper back (Mitchell et al., 2013), chest
(Ermes et al., 2008), shin (Muscillo et al., 2010), hip
(Jeong et al., 2007), waist (Mathie et al., 2004),
lower back (Bonomi et al., 2009) and feet (Zhang et
al., 2003). However, in the majority of contact-based
team sports, the upper-back is the only appropriate
location an accelerometer can be positioned (when
contained within a wearable tracking device).
Specifically, a device worn on other parts of the
body may have the potential to cause injury to the
user or indeed other participants.

Mitchell et al. (2013) recently proposed a method
using a single accelerometer contained within a
smartphone worn on the upper-back, with the aim of
identifying seven different sporting movements
(stationary, walking, jogging, sprinting, hitting a
ball, standing tackle, dribbling a ball). In their study,
an overall movement classification success rate of
75% was achieved using classification approaches
that included Support Vector Machine, Logistic
Model Tree, and range of Neural
Network/Optimization type classifier.

However, with the aim of achieving higher accuracy
rates, multiple inputs (i.e., both accelerometer and
gyroscope) have also been considered in the
literature (rather than a single accelerometer input
alone). As the data acquired through the gyroscope
provides essential information pertaining to the
position of the body during human movement, it is
not surprising to see both inputs combined to good
effect previously Leutheuser et al., (2013).

A range of different analysis approaches have also
been used previously in accelerometer studies, with
varying levels of success. Three analysis approaches
of particular interest in this study are i) Logistic
Model Tree (LMT), ii) Random Forest (RF) and iii)
Support Vector Machine (SVM). Logistic Model
Trees is a commonly used classification algorithm,
which performs competitively with other classifiers
and is easier to interpret (Landwehr et al., 2005).
The LMT combines two complementary
classification techniques: tree induction and linear
regression (Hornik et al., 2009). Random Forest is a
classification algorithm, which in its application
grows multiple classification trees and builds upon
them until each tree is at its largest (Breiman and
Cutler, 2001). The RF has various useful features
including high efficiency with large data sets, built
in ensemble classifiers, and an inability to overfit
models (Breiman and Cutler, 2001). Support Vector
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Machine is a classification algorithm, which
attempts to find the best separating vector between
two groups within a set of descriptors (Bennett and
Bredensteiner, 2000). For classification of data with
more than two groups the original problem is split
into multiple binary problems which are then
classified and compared, with the problem having
the most votes per instance being assigned as the
classifier (Meyer et al., 2014).

The aim of this study was to determine whether data
obtained from a wearable tracking device
(specifically, gyroscope and accelerometer) can be
used to identify team sport-related
movements. Guided by practical considerations and
current  literature  herein  we  focus on
classifying difficult movements, explore
classification methods  that  have been
successful, consider mix of time and frequency
domain features with varying window length and
implement a simple ANOVA based methodology for
filtering features.

2. METHODS

i Participants

Seventy-six (n=76) recreationally active, healthy
male participants (age 24.4 + 3.3 years; height 181.8
+ 75 m; mass 77.4 + 11.6 kg; mean £ SD) were
recruited for participation in the study. All
participants were regular competitors in one or more
contact-based team sport events per week at the time
of testing (Singh et al., 2010). All participants gave
informed consent following full disclosure of the
study protocol and procedures.

ii. Experimental Design

Participants were required to perform a range of
movements commonly undertaken in contact-based
team sports in a simulated team sport circuit. The
research design allowed for the assessment of
multiple team-sport specific movements in a
confined space. Details of the circuit design are
presented in the next sub-section.

During each trial participants wore a single,
wearable tracking device (Minimax S4, Catapult
Innovations, Australia), which contained a 100 Hz
tri-axial accelerometer, gyroscope, and other devices
not utilised for this study. The device weighed 67
grams, was 88 x 50 x 19 mm in dimension and was
worn in a tightly fitted manufacturer supplied
harness with the units located below the neck, in-line
with the spine (superior to the scapulae). Each
participant completed the circuit 6 times, with only
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data collected from each the third trial used in this
study

iii. Simulated Team Sport Circuit
The simulated team sport circuit involved a modified
version of the circuit developed by Singh et al.
(2010). Each circuit included three counter-
movement jumps, an eight meter jog, an eight meter
agility section, two jumps for distance, a 10 m
sprint, seven meters of walking, and a tackle bag to
be taken to ground with maximum force. After each
movement finished with the participant standing
stationary for one second before commencing the
next (i.e., three counter-movement jumps were
performed in a row then a one second pause
occurred). All movements were restricted within an
optimal 8 x 8 m capture volume. Each individual
circuit took approximately 45 seconds to complete,
allowing 15 seconds to rest before the next circuit
(on 1 minute) with six circuits completed in total (n
= 456). All participants performed an active warm-
up prior to commencing the full protocol, which
involved five minutes of jogging followed by six
laps of the circuit, during which time the
experimenter explained all requirements of the
circuit.

iv. Data Processing
The data gathered comprised of the accelerometer (3
axes and the resultant vector) and gyroscope (3 axes)
readings for the duration of the circuit. For each of
the eight movements of interest (counter movement
jump (CMJ), change of direction (COD), jog, run
and jump, sprint, stationary, tackle, and walk), the
corresponding data was extracted and processed to
generate features of interest. Figure 1 below gives an
overview of both the feature extraction and
classification process.
Features were extracted from the data using three
different window lengths of 0.5, 1, and 1.5 seconds
respectively, each with a 50% overlap. The window
lengths were chosen in such a way as to capture the
peak force of most activities whilst also being long
enough to accurately capture a descriptive segment
of each activity. Further, the use of a 50% overlap
has been proven successful in previous movement
classification studies (Bao and Intille, 2004).
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Figure 1: Overview of the feature extraction and
classification process.

Feature ) Accelerometer
Extraction | and Gyroscope
Data

Training
Data
(n=76)

Classification

Features were extracted from the data using three
different window lengths of 0.5, 1, and 1.5 seconds
respectively, each with a 50% overlap. The window
lengths were chosen in such a way as to capture the
peak force of most activities whilst also being long
enough to accurately capture a descriptive segment
of each activity. Further, the use of a 50% overlap
has been proven successful in previous movement
classification studies (Bao and Intille, 2004).
For each variable associated with the accelerometer
(3 axes and the resultant vector) and gyroscope (3
axes), a total of 59 features were calculated (7 total
inputs). Those features being:

e Minimum amplitude.

e Maximum amplitude.

e  Mean amplitude.
Variance of amplitude.
Spectral centroid.
Bandwidth.
Energy for each sensor (accelerometer and
gyroscope).

e Percentiles (.25, 0.75, interquartile range

[1QR])
The minimum, maximum, mean, and variance of the
amplitude provide important descriptors of the input
variables time domain and thus there were obtained
for each input (Leutheuser et al., 2013). The spectral
density and bandwidth provided via the use of the
FFT represent important descriptors relating to the
central mass and frequency domain of the input
variables (Leutheuser et al., 2013). Additionally an
energy feature was calculated for both the
accelerometer and gyroscope (Leutheuser et al.,
2013), as well as percentiles and IQR for each input
variable (Liu et al., 2012). The energy feature is
defined as
((Z?=1ai2))
3

n

E =
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Where a; are the axes corresponding to either the
accelerometer or gyroscope and n is the number of
observations per axis.

iv. Analysis
The three classification algorithms (LMT, RF and
SVM) were employed to classify the seven
movements  of interest.  However as  both
computational and data collection burdens have been
considered, analysis was conducted in two phases.
In phase one, a data collection burden was assessed.
This was achieved by, for each of the three window
lengths extracting the features as follows
e In case one all variables were considered
(59 features).
e In case two only the accelerometer and
resultant vector variables were considered
(33 features).
e In case three only the accelerometer
variables were considered (26 features).
In phase two a data processing burden was assessed.
This was achieved by, for each of the three window
lengths, extracting features as follows

e In case one, all 59 features were
considered.

e In case two, features were reduced to 42 by
using ANOVA.

e In case three, features were reduced to 37
(0.5 second window) and 38 (1 second and
1.5 second windows) using a combination
of ANOVA and lasso regression.

Under phase 2, features with significant results for
ANOVA at 5% level of significance across
classification groups were retained for classification
purpose. Next under case three, all features which
that were accepted through the case two were
passed for screening under lasso regression. Under
this screening a feature was selected based on the
combinations of (Mallow’s Cp (Cp), residual sum of
sqlzjares (RSS), and coefficient of determination
(R)

For each subject group (n=76) from the computed
set of feature data a single activity was randomly
chosen (with equivalent probability) and assigned to
the classification training set. A random sample
(with equivalent probability) of 32 activities was
then taken from the remaining set of feature data and
assigned to the classification testing set. The above
process was repeated 10 times. Each model was
then validated with classification accuracy defined
as percent of correctly classified cases.
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3. RESULTS

Results were obtained using an analysis routine
written in the statistical package R (R Core Team,
2013) which makes use of the following packages;
el1071 (Meyer et al., 2014), lars (Hastie and Efron,
2013), randomForest (Liaw and Wiener, 2002), and
RWeka (Hornik et al., 2009; Witten and Frank,
2005).

i Data Collection Burden

Table 1 presents the classification accuracies and
standard deviations for all three variable and
window combinations. Throughout all classification
iterations LMT greatly outperforms both RF and
SVM classifiers, obtaining classification accuracies
over 85%.
ii. Processing Burden
Table 2 presents the processing times for all three
variable and window combinations for a given
subject. The computational times are for an Intel®
Core™ {7-2670QM CPU with 8 GB RAM. From
this it can be seen that the processing time
(extraction and classification) for a feature reduced
model reduced using ANOVA is approximately 15%
faster than classification of the full model, while the

Table 1: Mean (SD) accuracy of classifiers for each
of the input variable variations and window lengths
after 10-fold cross-validation.

Window
0.5 1 15
Input
RE 0.28 0.47 0.28
Accelerometer, (0.14) | (0.12) (0.13)
Gyroscope, and LMT 0.90 0.90 0.88
Resultant (0.12) (0.05) (0.14)
Vector SUM 039 | 055 0.41
018) | 012) | (0.12)
RE 0.22 0.26 0.25
| 0.11) | (0.14) | (0.16)
Accelerometer
0.87 0.88 0.88
and Resultant LMT
5 |65 | 6
SYM 1 013) | 013) | (0.10)
RE 0.26 0.25 0.29
©0.15) | (0.13) | (0.17)
Accelerometer LMT 0.85 0.88 0.85
Only 0.16) | (0.13) | (0.13)
0.33 0.38 0.31
SYM 1 0o09) | 013) | (011)

Highest mean accuracy per variable variation and window length in bold
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combined ANOVA and lasso based feature
reduction model is between 1% and 3% slower than
the pure ANOVA model. Table 2 presents the
classification accuracies and standard deviations for
all three model selection methods and window
combinations. Once again  throughout all
classification iterations LMT greatly outperforms
both- RF and SVM classifiers, obtaining
classification accuracies over 85%.

Table 2: Mean (SD) accuracy and [Processing Time
(in seconds)] of classifiers for each of the model
selection variations and window lengths after 10-
fold cross-validation.

Window 0.5 1 15
Input Extraction | [236.25] | [230.98] | [228.87]
0.28 0.47 0.28
RF (0.14) (0.12) (0.13)
[7.54] [7.58] [7.72]
Agj:ﬁ;‘;g‘;e‘er 0.90 0.90 0.88
and Resuitant | T [(é]éf;] [(EE]éOGSg] [(5%1;&2]
Vector ’ ’ ’
0.39 0.55 0.41
SVM (0.18) (0.12) (0.12)
[104.55] | [102.84] | [105.98]
0.28 0.28 0.29
RF 0.12) | (0.14) | (0.14)
[6.6] [7.47] [6.92]
Accelerometer 0.86 0.85 0.85
and Resultant LMT (0.13) (0.13) (0.14)
Vector [42.51] [44.94] [44.38]
0.48 0.43 0.46
SVM (0.13) (0.13) (0.12)
[77.14] | [80.55] | [81.46]
0.26 0.28 0.22
RF (0.11) (0.15) (0.10)
[6.95] [6.83] [7.08]
Accelerometer 0.86 0.86 0.85
onl LMT (0.15) (0.12) (0.14)
Y [44.16] | [45.21] | [46.71]
0.46 0.42 0.42
SVM (0.16) (0.15) (0.14)
[77.57] | [76.71] | [83.15]

Highest mean accuracy per variable variation and window length in bold

4. DISCUSSION
The aim of this study was to determine whether data
obtained from a commercially available

accelerometer and gyroscope could be used to
identify team sport related movements. Optimal
results were obtained using LMT method and
window length of 0.5 and 1 sec, with an overall
accuracy of 90%. Largely the classification
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inaccuracy resulted from cases where Jog was being
classified as Run&Jump or Sprint and Tackle being
classified as COD or Sprint.
For reduced burden of data collection, using only
accelerometer and resultant or accelerometer alone,
the accuracy rate drops down to 87 and 85 %
respectively.  Such a model would require
approximately 230 sec of time for feature extractions
and further 54 seconds for classification of
movements using LMT model.
Comparable results are obtained in literature with
much larger volumes of data accumulation and
smaller number of classification groups. Nathan et
al. (2012) using accelerometer and GPS data
gathering over 750000 measurements and achieved
accuracy of over 84% for RF and SVM classifiers.
Leutheuser et al. (2013) also using the subsequently
large dataset and pre-clustering the activities,
achieved an accuracy of 87% for SMV method.
Mitchell et al. (2013) reported a similar trend in
classification with LMT method, on much smaller
frequency of data accumulation, being the
best performing classifications.
The window lengths selected for feature extraction
influence classification accuracy, and processing
time. The classification accuracy across the
explored window lengths and processing time are
not hugely different. Nevertheless the shorter
window lengths would be preferred with ability to
capture all movement types. For example the
average length of time taken to complete a tackle is
3.5 seconds with a peak force being experienced
over 0.5 seconds and 40% of the tackle being
captured over 1.5 seconds. To this end, our similar
classification rates to previous studies using a lesser
number of measurements is  encouraging.
It can be seen through this research that LMT is
highly effective at classifying sporting activity using
a single accelerometer and gyroscope with only
minimal data gathered.

5. CONCLUSION

In any sporting scenarios sports it is practical to
obtain the accelerometer and gyroscope data using a
single sensor worn between the shoulder blades. Our
results indicate that LMT is highly effective at
classifying sporting activities with approximate
accuracy of 90% and classification time of 230
seconds.
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Abstract

The duration over which teams in sporting leagues have an enhanced likelihood of winning a premiership is
called the premiership, championship or title window. Defining when a team enters their premiership window
is subjective and often based upon current or projected team strength, the recent trajectory of the team (i.e.
whether the team is moving up the ladder), and perhaps the coaching staff and club culture. Winning a
premiership is a clear indicator of success, but for a team to have entered their premiership window, the
definition is much broader and can include years of making finals or playoffs. Periods of success can be
fleeting, with a single outstanding year surrounded by years of mediocrity, or can be enduring. Likewise, a
lack of achievement can be brief or persist for decades, much to the frustration of clubs and supporters alike. A
critical component of success is the ability of a club to acquire a rare grouping of players that, in combination,
improve team strength to the point that success can be achieved. Trading aside, clubs obtain new players
through an annual draft. One of the more common draft systems is the reverse-order draft, whereby clubs
select players in reverse-order to their finishing position. This system can enable chronically poor-performing
teams the ability to ‘stock-pile” high draft pick players that have the potential to become a future collective of
champion players; and open the team’s premiership window.

In this paper we use a simulation model, Sports Synthesis, to explore how characteristics of the draft can
influence team success and failure. We find that some teams consistently cycle between success and failure,
while others can become stuck in mid-ranks, with minimal success over extended periods of time. A critical
determinant of the duration of the premiership window is the degree to which clubs are able to resolve the
ability of players in the draft, namely the draft choice error.

Keywords: Amateur draft, sporting success, player productivity, simulation model
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A HOLE BY HOLE SIMULATION MODEL FOR MEN’S PGA GOLF
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Abstract

Golf is widely regarded as a difficult sport to model.The focus of this paper is to build on previous research in
modelling PGA golf tournaments through simulation. The aim is to identify whether there is a use for hole
based modelling in tournament simulation. Tournaments have previously been simulated round by round, with
player scores sampled from one of multiple round score distributions.Distributions were chosen by chance
based on the likelihood a player would have a certain rank following each round dependent on their current
tournament score. In this research, we introduce a simple player ratings system, and a means of characterising
each hole on any given tournament course.These hole characteristics were used to create a score distribution
for each hole. Player ratings were used to create hole score distributions for each player for holes of the same
par. Bayesian Inference was employed to combine both these distributions, creating player dependent hole
score distributions. Such distributions facilitate hole by hole tournament simulation. The 2014 US Masters
tournament was used as a case study to compare the previous round based simulation model with the new
holebased simulation model. Analysis of results for predicted final rankings indicated the hole based model
was better than the round based model when simulation included the first three tournament rounds. This result
was reversed when only the last round was simulated. Findings suggest the benefits of the more
computationally complex method of holebased simulation are reduced as the tournament progresses.However,
a comparison of simulation outputs across multiple tournaments would be required for this to be concluded.

Keywords: Golf, Bayesian, Simulation, Hole by Hole, PGA

1. INTRODUCTION

Round based models allow player performance to
1.1 Simulation in Professional Golf be assessed at the break points in the tournament. It

is not unreasonable to think player performance
The majority of modelling in professional golf is will vary day by day. An issue however in round
not simulation based. Most modelling of score and based modelling is that the current form of the
rankings take the form of correlational analysis of player can only be evaluated three times throughout
longitudinal performance statistics with scoring the tournament. Given the natural difficulty in
average (O’Bree& Bedford, 2012). The benefit modelling scores, this is not ideal.
simulation provides is a method of dynamically
modelling what it known to be a difficult and It has been shown that tournament outcome
highly complex sport to model. Tournament predictions through round based simulation can be
playing fields typically number 150, and with 18 completed reasonably well using onlyhistoric round
holes per round and four rounds per tournament, scores and their corresponding rankings (O’Bree&
performance modelling needs to account for the Bedford, 2012). In this research, tournaments were
ample time available for variations in player simulated by generating round scores for each
performance. Tournament simulation provides a player prior to each round. Historic round scores
means of measuring the potential for variations in were standardised by the corresponding course par
performance and scores, not just in the tournament so round scores from courses with different course
as a whole, but by round scores and rankings, and par scores could be combined, creating the new
potentially hole scores and rankings. score variable Par Percentage. To account for a

round effect, so as to say control for differences in
1.1.1 Round based Modelling player performance between say round one and
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three for example, round score distributions were
generated for each using only scores from the
corresponding round in previous tournaments. This
result was a different score distribution for each
round of the tournament. These score distributions
were seen to be normally distributed, and due to the
independent  variable Par Percentage being
continuous, were approximated using binomial
distributions. This not only simplified computation
but made the score distributions discrete.

Each round score distribution was split by some
result outcome for the player who achieved the
score. For rounds one and two, the score
distributions were split by whether or not the player
made the cut. For rounds three and four, the split
was by whether or not the player was ranked in the
final top 10. Multiple distributions for each round
were introduced to account for differences in player
ability.

¢ Player Made Cut @ Player Missed Cut

Probability
o o
[ N

o

Round Score

Figure 1.Example of a split round score distribution
by making the cut.

Scores were randomly sampled from a round score
distribution based on each player’s likelihood of
either making the cut or finishing in the top 10
from their current tournament score. The
probability of each outcome based on current score
was calculated from the distribution of historic
round scores, and served as the prior distribution
throughout simulation. The prior distribution itself
was combinedwith individual player outcome
likelihoods, taken as the ratio of tournaments where
the player made the cut or finished top 10 to the
number of tournaments played. The posterior
distribution of the likelihood of sampling from
either round score distribution was found using
Bayes’ Rule.

P(116,)P(6y)
P(116,)P(6x) + P(1|6:)P (6x)

P(0x|D) =

Where round score distribution 6 is sampled
dependent on current score x with probability
P(6,,) conditional on player outcome likelihood [.

1.1.2 Hole based Modelling

—
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Hole based modelling has the potential to improve
a simulation model’s prediction performance
because it can measure player performance at a
more detailed level. Characteristics of holes can be
included in calculations, and depending on detail of
inputs, score prediction can be made specific to
both the hole and the player. An accurate measure
of a player’s ability based on hole characteristics
has the potential to capture variations in
performance better than a round based model
because multiple scores are modelled instead of
just one.

A method for evaluating player performance
(Stern, 2012) at the hole level used a semi-
parametric Bradley-Terry type strength estimation
model. This research provides a comparison
between observed rankings and a measure of
underlying player strength. Further, factors that
affect performance such as tee times and hole
difficulty can be quantified.

1.2 Aims

The aim of this research is to extend the round
based model (O’Bree& Bedford, 2012) from
previous research into a hole based model. Using
the 2014 Masters as a case study, the two models
will be used to simulate the tournament with
prediction accuracies compared following each
round. Analysis of results will indicate whether
simulation at the hole level provides benefit in
terms of prediction over the round based model.
Should the hole based model prove to be of benefit,
or at least practical in its current form, model inputs
could be expanded to include results from research
into factors not yet considered. The inclusion of a
better measure of hole difficulty, for example,
would like improve the accuracy of prediction by
the hole based model.

2. METHODS
2.1 Data and Software

A database of hole by hole round scorecards was
utilised to build score distributions and facilitate
tournament simulation. A player’s scorecard
contains the hole and par score for each hole, as
well as tournament characteristics such as date,
location and year.These scorecards were sourced
primarily from sports.yahoo.com/golf, using Visual
Basic for Applications (VBA) macro procedures in
Microsoft Excel.Player ratings and hole score
distributions were generated using data from every
official PGA tour event spanning the first
tournament of the 2007 tour til the last tournament
played before the 2014 Masters.All simulations
were carried out using Microsoft Excel 2010. A
more comprehensive description of software
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mechanisms is available in the proceedings of the
International Association of Computer Science in
Sport (IACSS) 2014 Conference (O’Bree&
Bedford, 2014).

2.2Player Ratings

Player ratings were created dependent on hole
scores from recently completed rounds. As such,
these ratings are seen as a measure of the current
form of a player.

For any given complete round, we can determine a
ratio score for each player based on hole par. This
ratio is taken as the sum of the hole scores divided
by the average total across the playing field. The
ratio score is calculated for each of par 3, 4 and 5
holes, giving three ratio scores for each player of
each completed round. The rating itself is taken as
the average of the eight most previously completed
rounds. In the event less than eight rounds of data
are available for a player, the average of any
available ratios are used. It should be noted that this
parameter has not been optimised. This was an
arbitrary value chosen because it ensured that for
any given player at least two recently played
tournaments are included in calculation, given most
tournaments consist of four rounds.

t-1
z Ratio;;
j=t-8

Where R;; is the rating prior to round t for holes of
par i.

Rt,i =

@]

2.3 Hole Score Distributions

Conditional score distributions incorporating player
ratings and hole characteristics are used to simulate
hole scores, and as a result entire tournaments.
Bayesian Inference is used to update probability
distributions through the introduction of additional
information using Bayes’ Rule. In this case, we
want to update hole score probability distributions
based on the ability of a player.

2.3.1 The Prior Distribution

A prior score distribution for each hole was
determined by considering two  simple
characteristics, the hole par and a measure of the
hole’s difficulty, average score. The hole par is
defined as the expected number of shots a
professional player should take to reach the green
plus two putts. Typically, this makes the hole par
dependent on its distance from tee to green. The
difficulty of a hole can be gauged by comparing the
average score for the hole with its corresponding
par. This is of course neglecting any impact from
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intermittent, dynamic factors during a round such
as wind, and assuming the quality of a tournament
playing fields are equal across tournaments. Using
these characteristics, we can create a probability
distribution of observed hole scores based on the
hole par and the inferred difficulty of the hole.

P(x|{i, }) prior~{Par i, Average Score x}

For the purposes of this research, the average score
of a hole from the most recently completed
tournament round is used. The average score is
rounded to one significant decimal place.

2.3.2 The Posterior Distribution

The posterior hole score distribution is an updated
version of the prior distribution using what is
referred to as the likelihood function. The
likelihood function simply contains additional
information. The aim is to tailor the score
distribution to individual players. In the same way
a prior score distribution was determined, we can
generate score distributions based on the hole par
and observed scores from players with equal player
ratings.

P(x|{i, 7} Liketinooa~{Par i, Player Rating r}

For the purposes of this research, player ratings are
rounded to one significant decimal place.Bayes’
Rule is used to combine the two hole score
distributions, creating the posterior distribution.

In the event no scorecard data was available for a
player, a uniform likelihood distribution was
assumed, meaning the posterior distribution is the
same as the prior distribution, and the hole score
distribution reflects the historic distributions of
scores for that hole. Such a scenario is not unusual
given the playing list for The Masters is created on
an invite basis and tournament winners from non-
PGA tours are invited to compete. There were four
such instances in the 2014 Masters tournament.

Note that no data smoothing has been used when
generating any of the hole score distributions.

3. RESULTS

Both the round and hole based models were be
used to simulate the 2014 Masters tournament. A
total of four simulations were completed for each
model, where simulation took place prior to the
start of each day’s play. Each simulation comprised
of 30,000 iterations.

Simulation results focussed on the accuracy of
predicted rankings for each player, primarily the
final rankings. Due to the cut taking place after
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round two, simulations of rounds prior to round
three also looked at predicting players who will
make the cut. Analysis of predictions was in the
form of measures of classification, specificity,
sensitivity and accuracy, and correlation
coefficients. Specificity is a measure of a model’s
ability to correctly exclude cases, meaning to
correctly classifying a player as missing the cut
given they do in fact miss the cut. Sensitivity is a
measure of a model’s ability to correctly include
cases, meaning to correctly classifying a player as
making the cut when in fact they do.

A total of four models were analysed. The round
based and hole based simulation models are
labelled as RMITa and RMITb respectively. Also
included is a naive model, which essentially
projects current rankings at any point as final
rankings, labelled Naive. The Naive model
provides reference for what can be seen as a
measure of volatility in rankings. The final model
comes in the form of ranking publicly released
outright tournament win market prices from
bet365.com, labelled Bet365.Predictions from this

model assumed players who have been judged
more likely to win the tournament, by having a
lower market price, are more likely to have a better
final ranking in general. As such, market prices are
ranked to infer final rankings. The inclusion of the
additional two models is to provide a point of
reference with regards to prediction accuracy;
particularly, the Naive model which indicates if any
modelling benefit exists from simulation.

3.1 Predicting the Players Making the Cut

Players Correctly Predicted to Make the Cut”

Model Pre Round One Pre Round Two
Naive NA 39
Bet365* 31 35
RMITa 20 38
RMITb 30 38

# Total of 51 players made the cut
Table 1: Number of Players Correctly Predicted to Make
the Cut

Measures of Classification for Players Predicted to Make the Cut

Pre Round One

Pre Round Two

Measure
Naive Bet365° RMITa RMIT2b  Naive Bet365" RMITa RMIT2b
Specificity ~ NA 0.489  0.326 0500 0.717 0320 0.717 0.717
Sensitivity ~ NA 0.620  0.392 0588 0.765 0.745 0.745 0.745
Accuracy NA 0.558 0.361 0.546 0.742  0.597 0.732 0.732
Samples 95 97 97 97 72 97 97

# Bet365 Top 51converted from outright win market lines

Table 2: Measures of Players Correctly Predicted to Make the Cut following Round Two

Table 1 displays the number of players correctly
predicted to make the cut. Prior to the tournament
commencement the Bet365 and RMITb models
correctly assigned 31 and 30 players respectively,
while RMITa correctly assigned 20 players. As
would be expected, all models improved following
round one. The Naive model outperformed the
others, however only slightly in the case of both
RMIT models. Table 2 displays similar trends in
predictive success with classification measures,
with both RMIT models outperforming the Bet365
model, and only slightly less successful than the
Naive model. These results indicate it is easier to
correctly classify a player as missing the cut than to
classify a player as making the cut.
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3.2 Predicting the Top 10

In total, 13 players ranked in the final top 10. This
is due to six players being tied ranking eighth.

Players Correctly Placed in the final Top 10

Model Pre Round Three Pre Round Four
Naive 7 10
Bet365* 8 8
RMITa 6 ’
RMITb 6 ’

# Total of 13 players placed in the final Top 10
* Bet365 Top 10 converted from outright win market lines

Table 3: Number of Players Correctly Predicted to Finish
Top 10
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Measures of Classification for Top 10 Placed Players

Pre Round Three

Pre Round Four

Measure
Naive  Bet365° RMITa RMITb  Naive Bet365° RMITa RMITb
Specificity 0.816  0.939 0.895 0.895 0921 0.857 0.974 0974
Sensitivity  0.538  0.615  0.462 0462 0769 0.667 0.692  0.692
Accuracy  0.745  0.848 0.784 0.784 0.882 0.769 0.902  0.902
Samples 51 45 51 51 51 26 51 51

* Bet365 Top 10 converted from outright win market lines

Table 4: Number of players correctly predicted to Place in the Top 10

Table 3 displays the number of players correctly
predicted to finish in the top 10. The Bet365 model
was the only model not to improve between rounds,
with the other models all improving by 3 correct
classifications. Note though the smaller sample size
in market prices. As was the case when predicting
the players who would make the cut, it appears it is
easier to identify players who won’t finish top 10
than to identify those that will. In this case,
measures of classification were the same between
RMIT models, despite differences in predicted
rankings between the models for the same players.

3.3 Predicting the Final Rankings

Final Rankings Correlation Coefficient

Model Pre Round Pre Round Pre Round
Two Three Four
Naive .389* .454* .825*
RMITa 194 436* .828*
RMITb .357* .496* .796*

* Correlation is significant at the 0.01 level
Table 5: Spearman Correlation Coefficient for Predicted
and Observed Final Rankings

Cumulative Proportion of Absolute Errors in Predicted Final Ranking

Absolute Error (<=) 0 1 2 3 4 5 6 7 8 9 10
Naive  0.04 0.17 021 021 025 029 042 054 058 058 063

Pre Round Three RMITa 008 008 013 013 021 033 038 042 042 046 054
RMITb 0.04 013 017 021 025 033 038 046 054 054 058

Naive 013 029 054 054 058 058 063 067 067 071 088

Pre Round Four ~RMITa 013 033 050 054 058 067 067 067 067 071 075
RMITb 013 029 046 050 063 063 063 063 067 071 071

Table 6: Cumulative proportion of absolute errors in predicted final rankings

Table 5 displays correlation coefficients for
observed and predicted final rankings. Correlations
between the Naive and RMITb models are
essentially the same throughout simulations.

Table 6 displays absolute errors in predicted final
rankings as a proportion of all predictions. The
better the predicted rankings across the spectrum of
the player list the greater the proportion with
smaller absolute errors. Predictions prior to round
three saw the Naive model have the greatest
proportion as error increased. Predictions prior to
round four saw similar measurements between the
three models until the absolute errors reached a
value of 10, at which point error are quite large.

4. DISCUSSION
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When models were used to determine the players
who would make the cut following round two,
there were varying results between models when
predictions were made at different times.

Prior to round one, no observed scores or ranks can
be used, so predicted ranks rely only on measures
of form for each player that each model uses. It is
no surprise the round model RMITa, which does
not include such measures, is much less effective in
classifying players. The Bet365 and RMITb models
were essentially equal in success. While the Bet365
model uses publicly released market prices which
are subject to influence from the public opinion, the
similarity in success suggests the player ratings
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measure utilised by RMITb is a suitable model
input.

Predictions in the players who would make the cut
following round one have observed scores and
rankings available. The Naive model was most
effective in inferring the players who would make
the cut, which tends to suggest that a player’s
current position is a more important factor in
determining final result than the player’s form. This
is further evidenced by the substantial improvement
in the round based RMITa model, putting it on
level pegging with the hole based RMITbh model.
Note these results relate to one tournament only,
and such a finding needs to be measured in more
tournaments to be concluded. The Bet365 model
showed improvement but to a lesser degree. One
would expect wagering patterns would somewhat
reflect the presence of well-placed champion
players and past winners over current scores,
particularly in the early rounds of a tournament.
Again, this may be explained by a tendency to
favour some aspect of a player’s history or current
form over their current tournament position.

When predicting players who would finish with a
final rank in the top 10, we saw a drop in
classification accuracy for the Bet365 model
between pre and post round three calculations. This
tends to suggest that a decline in the quality of
performance by bigger name players was
influential in this tournament. Take for example
Adam Scott, the pre-tournament favourite. His final
ranking was tied 14" scoring 289 for the
tournament. He scored 76 in the third round, four
shots more than his next highest round score at 72.
A third round score of 72 would have seen his final
score be 286 and tied for fifth. A third round score
of 75 would have seen him tied eighth. The
difference between making and missing the top
10for Scott was one shot, and given his worst score
was in the third round, it is reasonable to attribute
the drop in classification accuracy to these
differences in performances like these.

It is interesting to see the classification measures
were the same between the RMITmodels when
predicting the final top 10. The similarity suggests
the worth of the features of the models are the same
— at least following the end of round two. The
RMITa model uses the likelihood a player will
finish in the top 10 given they made the cut
throughout the seven seasons of data used and their
current score for simulation inputs. The RMITh
model uses a measure of hole difficulty in the most
previous average score and a player rating for
current form to generate score distributions. Given
results were the same, it may be the case that using
this particular measure for player ratings does not
provide better round score accuracy when holes are
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evaluated individually. Should this be the case, a
measure of current form is no better than an
historic measure at providing insight into
performance in the last two rounds of the
tournament, given inferences from sampling round
scores were the same as from sampling hole scores
and totalling round scores.

Analysing the absolute errors in predicted final
rankings and correlation coefficients with observed
final rankings indicated that prior to round three the
RMITb model had slightly better predicted
rankings, while post round three the RMITa model
had better predicted rankings. In each instance, the
better of the RMIT models had a better correlation
coefficient than the Naive model for the
corresponding round. As absolute error in predicted
ranking increased, the model with the greatest
proportion of predictions varied. Such findings
indicate the while variations in the distribution of
absolute errors were present for each model, the
difference in the RMIT models was able to tease
out an improvement over the Naive model
following round two.

6. FUTURE RESEARCH

Future work will look to confirm findings in this
research. Mainly, that current position is a more
important factor to consider when simulating
tournaments than current player form as the
tournament progresses.

6. CONCLUSIONS

The aim of this research was to find out if there
was benefit to simulating golf tournaments at the
hole level when compared to the round level. The
two models analysed performed well overall when
compared with two other predictive models. Both
models were seen to perform the best at certain
times during the tournament, such that there would
be value in including both round based and hole
based simulation models for tournament simulation
weighting results accordingly.
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MODELING SERVICE PLACEMENT BY PENETRATION POINTS OF
RETURN PLAYER’S ACTION PLANE

O. Kolbinger & M. Lames

Chair for Performance Analysis and Computer Science in Sport, TU Miinchen, Germany

Aim of the study

The advent of 3D ball trajectory data in tennis has brought into reach new options of modeling
relevant behavior in tennis by mathematical processing of these data. In previous work, placement of
services was characterized by their bouncing points in the service box (Loffing et al., 2009). Much
more relevant in terms of tennis tactics is the penetration point of the ball trajectory of the service
through the action plane of the return player. The location of this point in vertical and lateral direction
imposes problems for a return. With 3D ball trajectory data available mathematics for calculating
penetration points becomes quite easy.

Methods

A vertical plane three feet in front of the receiver’s baseline is assumed to be the action plane of the
return. Ball trajectories are obtained by image detection methods. The part of the trajectory after the
bounce of the service is given by a three-dimensional cubic polynomial. A MATLAB (The
Mathworks, Inc.) procedure was programmed for extracting the y-z-coordinates of the ball’s
penetration point.

In order to investigate the distribution of tennis serves, a virtual plane with 24 slots (5 in z-direction, 8
in y-direction) was built for each of the four serve categories: deuce court — first serve, ad court — first
serve, deuce court — second serve and ad court — second serve.

Data were obtained from 10418 serves of 53 right-handed male players during international
tournaments on hard court.

Results

Due to different spin and speed, service bounces in the service box are quite dissimilar to penetration
points in return action plane.

The main tactical plans associated with first and second services from deuce and advantage side could
be found in hitting vertical and lateral slots in return action plane. Statistically significant differences
proved different tactical behaviors in the respective situations.

Conclusions and outlook

This study demonstrates that data provided by new technologies allow for mathematical models
more adequately describing behaviors in sport. (Simple) Mathematics allows revealing structures
of performance that were formerly not accessible to performance analysis.

There may be still more adequate ways to model the return player’s action plane, e.g. in a curve-
shaped way. Also, the development of mathematical models for new performance indicators for
the placement of services can now be addressed at a new level of evidence.
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THE SURFACE EFFECT IN ATP TENNIS

Jaclyn Yap, Anthony Bedford* and Michelle Viney

RMIT University, Melbourne
*Anthony.bedford@rmit.edu.au

Abstract

This paper focuses on the surface effect in men’s tennis from both a performance perspective and a wagering
angle. Through analysis of data from 2002-2013, we investigate a number of effects distilled by surface. We
find that significant variation in both the predictability of outcomes exists across surfaces. We also look at the
efficiency of the markets by surface, and how, in light of diminishing over-round, how surface plays a part.
We also investigate the volatility of results by surface, controlling for the level of the tournament (grand slam
down to ATP250), and the number of times there are in-game shifts in lead, for example, changes in lead (ie.
6-3 to 3-6, and by underdog against favourite).

We also consider the length of matches via games played as a function of potential matches possible (ie in 3 or
5 set tiebreak/non tiebreak). Whilst not necessarily a precise measure of length, we consider this as a
reasonable pseudo measure.

Keywords: tennis, surface, ATP.

play on. When the ball contacts the grass surface

1. INTRODUCTION the ball tends to stay low and skid.
Various research has been performed in
Tennis is one of the few sports where the game analysing the effect of court surface as there is an
can be played on different court surfaces. On the expectation that all players win a higher
professional circuit players compete on grass, clay, percentage of serves on grass than other surface
carpet, indoor, acrylic and synthetic hard court. (Barnett and Clarke, 2005).
Each court surface has its own characteristics Barnett and Clarke (2005) and Barnett,
which can have a positive or negative effect on a O’Shaughnessy and Bedford (2011)applied the
player's style of play and consequently effects of court surface to calculate the probability
performance (Clarke and Dyte, 2000). For of winning a point on serve using overall
example, Pete Sampras won fourteen grand slams percentage of points won on serve for that
yet failed to win the French Open. tournament and player’s returning and serving
The most common court surface is hard statistics for each surface.Del Corral and Prieto-
court. Hard court is known to produce medium to Rodriguez (2010) found that a significant court
fast courts which the ball tends to bounce more at effect regarding higher-ranked player victories in
contact. Players with big serves and forehands Wimbledon and Australian women’s tournament.
tend to perform better on hard court. Clay courts Koning (2011) found that performance advantage
are considered to be slower courts where at contact can be partially attributed to the familiarity with
with the surface the ball tends to bounce up or sit the court surface. McHale and Morton (2011)
rather than skidding, where a greater number of found that surface, time and ease of win is an
bad bounces occur. Grass courts suits a serve-and- important measure to assess player’s quality and
volley style of play as they are the fastest court to produce more accurate forecasts. They concluded
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that clay should be regarded as a separate entity in
a forecasting model.

Thus the aim of this research is to
investigate the surface effect in men’s tennis from
both a performance perspective and a wagering
angle. Analysing eleven years of data we
determine whether an effect of court surface was
present, and how it can be considered when
modelling ATP tennis.

2 METHODOLOGY

To examine our data, we utilised a number of
sources. To assist we utilised both individual
player’s in-game data and post match results. We
also required knowledge of the ATP tournaments,
including the surface and points. In this way were
able to isolate various facets of the effect. Tennis
Insight (tennisinsight.com) was most useful in
utilising player based data. Stevegtennis was also
used — and has been around since the dawn of the
internet. Our analysis methods were simple data
extraction methods and cross tabulation. We also
utilised two sample z-test of proportions and
standard confidence intervals where needed.

A number of terms are used that the reader may
not be familiar with, so we define these as follows:
Efficiency — this term is used in terms of a market
being efficient, that is, that it predicts to
expectation. This is a common term used to
evaluate systems. A model’s efficiency is used in
that way.

Over-round is the amount of additional probability
attributed to a market by a bookmaker. For
example, if a market is framed as follows:

Roger Federer $1.73
Rafael Nadal $2.00

Then we Over-round = (1/1.73) + (1/2) -1 =
0.58+ 0.5 -1 = .08 or 8%.

Chi-square goodness of fit tests were also used to
evaluate outcomes of results against expectation.
Lower chi-square values indicate markets or
models that are efficient.

We shall provide you with a variety of tables and
figures that tear apart surface against a variety of
measures.To be able to achieve this we can present
the efficiency by tables.
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3 RESULTS

We shall present our look at surface through
consideration of a number of factors. We shall
firstly consider surface in general for our data set,
and how it compares by year.

3.1 Preliminary Look

To begin we looked at 2013 in terms of the
service, breaks, aces, games and sets played. It is
notable that such data is now available at this
micro-level at ATP, WTA, and most challenger
tournaments. It is feasible to obtain these statistics
very easily via Tennis Insight. This data is
navigable back to 2008.

3.1.1  Match Effects by surface: 2013

To consider the recency of performance, we
investigated 2013 in detail. We isolated the three
major surfaces, grass, clay and hard court. There
werel443 clay matches, 1661 hard court and418
grass matches in our set of data played at the ATP
level on these surfaces. We found that Clay had
clearly the lower quantity of games and sets per
match, and the lowest number of tie breaks. Table
1 exhibits the details.

Grass Clay Hard
Sets/Match 2.64 2.43 2.54
Games/Match 26.18 23.07 24.54
TieBreak/Match  0.53 0.33 0.39
TieBreak/Set 0.20 0.13 0.15

Table 1: Rate of Match Statistics by Surface, 2013

These results tend to indicate that Clay may well
be a more predictable surface, and Grass less so.
More games and sets are played on grass, and the
numbers of tie-breaks are significantly higher than
the other two surfaces. Inverting the Tie Break
statistics gives us a raw estimation of a price for
each likelihood, without consideration of over-
round, or players, as in Table 2.

Grass Clay Hard
TieBreak/Match  $1.90 $3.10 $2.60
TieBreak/Set $5 $7.70 $6.70

Table 2: Empirical Price by Surface.

Considering the Service specifically reveals some
interesting findings. Whilst we infer that from
Table 1 Clay has ashorter match in terms of
games, and possibly more predictable, it is
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certainly not through server dominance. Table 3
shows the service statistics by surface for 2013.

Surface Gras Cla Har Sig.
S y d
Aces per .57 34 49 SS
game
1"ServeIn 625 615 .596 NS(GVC):S
S
1" Serve Win .730 .680 .713 SS
2" Serve 512 499 502 NS(CvH);
Win SS
Serve Hold 814 744 777 SS
BreakChance .50 .62 56 SS
s per game
Breaks Win 19 26 22 SS
per game

Table 3: Service Statistics by Surface for 2013

Test of proportions on all pairings yielded
significance (SS) with the exception of 1% serve in
for grass and clay. Service breaks are more
possible and obtained on clay.

3.1.2 Case Study: Rafael Nadal and Novak
Djokovic — 2011.

For interest, we isolated the matches of two of the
best players of recent time. We selected 2011 as it
was the year when both players had comparable
exposure to both grass and clay.

Let us first consider the Clay performance, as
shown in Table 4. Considering the match statistics,
both players have a similar success ratio, even
down to the game level.

Djokovic

Match

WIL 92% (24-2) 94% (17-1)
Set W/L 85% (55-10) 83% (38-8)
Gm W/L 63% (386-222) 63% (262-154)

Djokovic
Match
WIL 80% (8-2) 100% (7-0)
Set W/L 73% (24-9) 84% (21-4)
Gm W/L 56% (180-139) 61% (142-89)

Table 4: Match statistics by surface

Looking at Table 5, we see the serving power of
Djokovic, with his higher rate of aces per game on
both surfaces. Notably, clay yields a much lower
rate of aces than hard, as expected. No difference
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exists in double faults. Despite Nadal’s renowned
dominance on clay, Djokovic holds serve with a
higher rate. Grass overall provides higher rates of

service holds than Clay.

Clay NETEL Djokovic
Aces per Gm 0.19 0.3
DFs per Gm 0.1 0.12
1st Serve % 70.30% 65.70%
1st Serve W% 70.50% 74.00%
2nd Serve W% 56.70% 59.10%
Service Pts W% | 66.40% 68.90%
Service Hold % | 83.40% 88.10%
Grass INETGEL Djokovic
Aces per Gm 0.43 0.52
DFs per Gm 0.1 0.14
1st Serve % 69.50% 68.50%
1st Serve W% 74.10% 77.40%
2nd Serve W% 59.00% 59.00%
Service Pts W% | 69.50% 71.60%
Service Hold % | 86.60% 90.60%

Table 5: Service statistics by surface. 2011.

When considering Nadal’s return game, we see
Nadal’s strength come through. Table 6 isolates

this data.
Clay NETEL Djokovic
Opp. 1st Serve % 61.40% 63.40%
1st Return W% 38.60% 36.00%
2nd Return W% 61.30% 57.70%
Return Pts W% 47.30% 43.90%
BPs Won per Gm 0.44 0.37
BP Chér;;:es per 09 0.81
Break Pt W% 48.50% 46.00%
Opp Hold % 56.10% 62.90%
Grass INETEY Djokovic
Opp. 1st Serve % 64.20% 63.30%
1st Return W% 27.60% 32.90%
2nd Return W% 55.60% 55.30%
Return Pts W% 37.60% 41.10%
BPs Won per Gm 0.25 0.31
BP Chérrfes per 0.54 0.66
Break Pt W% 46.40% 47.30%
Opp Hold % 75.20% 68.80%

Table 6: Return statistics by surface, 2011.
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Nadal’s ability to win on return on clay is his edge,
with dominance on all statistics (over Djokovic)
clear. He wins close to 50%.

3.2 Longitudinal Approach

We now consider the data set from 2003-2013
inclusive. Figure 1 outlines the sample size.

4,000~

30004 ——

1,000

T T T T T T T T T T T T
2003 2004 2005 2006 2007 2008 2008 2010 2011 2012 2013 2014

Year

Figure 1: Matches in data set by year

Our set of data reveal a fairly uniform amount of
matches for this period, excluding 2014, and we
now look at how the market modelled this period.
3.21  Over-round

Firstly, we look at the over-round for this time

frame. Figure 2 below provides the 95% C.I. for
the mean over-round per year.
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Figure 2: 95%CI for over-round by year by surface

A notable trend is the decline in over round,
suggesting a more accurate framing of the market,
or a higher turnover allowing reduced margins for
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the bookmaker. Notably grass generally yielded
the lowest over round.

3.2.2  Upsets

We now consider the favourite and underdog
winning performance by year. Table 7 shows the
wins by year by status. Here, a tied start price is

defined as a Tie, and Favourite the player winning
at a shorter start price than their opponent.

Year Fave Tie UDog
2003 66.6% 5.4% 28.1%
2004 66.1% 3.7% 30.3%
2005 69.1% 2.7% 28.1%
2006 67.6% 2.7% 29.7%
2007 70.6% 2.1% 27.3%
2008 69.4% 1.6% 29.0%
2009 69.8% 1.4% 28.8%
2010 70.1% 1.4% 28.5%
2011 72.5% 1.3% 26.3%
2012 69.3% 1.0% 29.7%
2013 68.6% 1.3% 30.1%

Table 7: Wins by status by year

What is evident in an improvement in the favourite
winning, with the win % bubbling around 69%
post 2004. There is a consistent reduction in
matches starting at even money, and surprisingly
2013 yielding the highest win rate for underdogs
since 2004.

s000] Fave. Market

2,000
1,000 H
0 A L T T T

T T
2003 2004 2005 2006 2007 2008 2008 2010 2011 2012 2013 2014

Count

Year

Figure 3: Favourite/Tied/Underdogs by year

Figure 3 shows the counts to provide some scale to
these outcomes, with the evident reduction in even
money start prices.
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We now wish to consider if the surface has an
impact on underdogs winning. We found for 2013
that clay may yield more unpredictable results.

Surface Fave Tie Underdog
Clay 69.06% 2.06% 28.88%
Grass 71.55% 2.06% 26.93%
Hard 68.30% 2.28% 28.77%

Table 8: Overall Favourite results by Surface

Table 8 shows that both hard and clay yield more
unpredictable results over the entire period than
Grass.Splitting by surface by year, we now
consider each of the winners.

Firstly, we look at the pre-match favourite by year
by surface.

Year Grass Hard Clay
2003 68.00% | 66.00% | 68.10%
2004 70.00% | 64.40% | 68.40%
2005 72.80%  68.60% | 68.60%
2006 7040%  67.80% | 66.10%
2007 7410%  71.00% | 69.30%
2008 72.10% | 68.70% | 70.50%
2009 72.80%  70.60% | 67.50%
2010 69.10%  72.80%
2011 7490%  73.20% | 70.40%
2012 70.50% | 68.80% | 69.80%
2013 69.50% | 68.30% | 68.80%

Table 9: Favourites win % by year by surface

Table 9 above shows that Grass yielded the lowest
number of proportional winners in only one year,
2010. The squares indicate the lowest proportional
wins by the favourite for that year. Hard and Clay
have five each. Grass yields the most predictable
results from the public price perspective.

3.2 Winning from behind

We considered all surfaces by comeback — that is —
when a player was down one set within a match.
There is little variation in the comeback factor —
with Clay the lowest and Hard the highest. So, one
in five matches yields a comeback.

Wins from<=1 set down

Surface Win Loss %
Clay 1858 7826 19.2%
Grass 666 2683 19.9%
Hard 3013 12253 19.7%
All 5768 23845 19.5%

Table 10: wins from at least one set down
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Of greater interest is the underdog comeback. So
we consider how often an underdog wins when
going behind. Interestingly, the favourite wins
17.4% of the time they go behind, yet the
underdog wins more often, recording a win 24.8%
of the time they lead then go behind.

3.3 Market Efficiency

Through banding of the winners pre-match
probability of winning, we can ascertain possible
inefficiencies in the market. We see in Table 11
below all prices in our set by surface —i.e. not
differentiated by year.

Banding-

Clay Grass Hard
surface
0.00-0.05 2.1% 9.4% 0.0%
0.05-0.10 4.6% 4.6% 4.4%
0.10-0.15 6.8% 10.3% 9.5%
0.15-0.20 16.0% 11.0% 13.7%
0.20-0.25 20.8%  17.5% 17.9%
0.25-0.30 21.8%  24.4% 25.0%
0.30-0.35 29.2%  26.4% 30.1%
0.35-0.40 32.7%  31.3% 34.4%
0.40-0.45 405%  38.8% 40.0%
0.45-0.50 43.3%  41.5% 43.6%
0.50-0.55 48.2%  48.3% 48.4%
0.55-0.60 528%  53.7% 53.6%
0.60-0.65 58.1%  58.6% 57.3%
0.65-0.70 62.9%  65.9% 61.6%
0.70-0.75 69.3%  71.0% 68.2%
0.75-0.80 73.7%  74.0% 73.0%
0.80-0.85 80.0%  76.1% 78.3%
0.85-0.90 80.1%  84.9% 83.6%
0.90-0.95 90.1%  88.8% 87.7%
0.95-1.00 95.4%  95.0% 96.1%

Table 11: Banding by Surface

If we classify each cell’s value as below (L) inside
(O) or above (H) we note that Clay yields the most
within band results, with Hard court the least. This
is seen in Table 12 below. Across all analyses we
see typically under-target strike rates and this can
be attributed to, in part, the unadjusted allocation
of the over-round. So to address this, we utilise the
equal-distribution methodology to consider the
over-round results.
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Banding-

Hard
surface

Clay Grass

0-0.05
0.05-0.10
0.10-0.15
0.15-0.20
0.20-0.25
0.25-0.3
0.30-0.35
0.35-0.40
0.4-0.45
0.45-0.5
0.5-0.55
0.55-0.6
0.6-0.65
0.65-0.7
0.7-0.75
0.75-0.8
0.8-0.85
0.85-0.9
0.9-0.95
0.95-1

oorrrrrrrrrrroOrrroorro
rrrrroorrrrrrrrrrrrrror T
orrrrrrrrrrorrrrrr

Table 12: Classification of Banding

If we were to use the equal distribution approach
to redistribution of over-round (ie addition half of
the over round to each player), we would see this
improve to the results as seem in Table 13 below.

Banding-

surface Hard

Clay  Grass

0-0.05
0.05-0.10
0.10-0.15
0.15-0.20
0.20-0.25
0.25-0.3
0.30-0.35
0.35-0.40
0.4-0.45
0.45-0.5
0.5-0.55
0.55-0.6
0.6-0.65
0.65-0.7
0.7-0.75
0.75-0.8
0.8-0.85
0.85-0.9
0.9-0.95
0.95-1

oI

OCOroooooocooocooroor
OC0O0Oroooooororrooroo-x-
cNoNoNoNoNolnloNoNoNoNoNoRoNoNoNoNoNONO)

Table 13:
distribution)

Inclusion of over-round (equal
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The redistribution of over-round now indicates a
much different picture of efficiency, as seen in
Table 13. Grass yields the least within band
results; Hard court the most. However, overall the
picture is far better than that shown in Table*.

3.5 Predictability in differing tournament levels

An interesting comparison is that of the favourites
in ATP tournaments of lesser value. We define
that as Non-Masters/Grand Slams- as at the time
of publishing this equates to ATO 500 or less.

Clay Grass Hard

M+ NM M+ NM M+ NM
Fave 717 675 765 670 700 677
Tie 2.0 2.2 18 2.3 2.0 2.6
Underdog 26.3 303 217 30.7 280 297
Table 14: Masters and higher vs lower level

tournaments

What is clear is that the market yields a greater
deal of predictability in Masters/Grand Slams
results than smaller events. There is a
systematically reduced predictability about the
non-masters events.

4 CONCLUSION

In this paper, we found a number of prevailing
factors. Firstly, clay has the lowest amount of
games per match, and the lowest amount of tie-
breaks. Grass has significantly higher rates. Clay
yields the lowest service success. It also has the
highest amount of break opportunity. Clear
example of this was seen with Nadal’s clay form.
As found in other studies (Schembri& Bedford,
2011), over-round is diminishing in tennis. NO
real clear trend by surface exists, with some
variability in the 2012 data.

Around 69% of the time the favourite wins,
however once this is broken down we find that this
rises for Masters and Slams — dramatically for
Grass.

The comeback factor showed no surface bias.
Finally, we noted that the post adjustment of
probability for over round yielded a quite efficient
market, especially above the 0.50 mark.

Clearly, consideration of surface is needed for all
modelling, and even more important is the
consideration of the level of tournament. The large
difference in predictability at masters v non
masters begs for further investigation and
integration into models.
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Abstract

A previous paper investigated using regression analysis and .exponential smoothing to create individual player
ratings from doubles tennis results. The exponential smoothing method required both players’ ratings to be
altered equally depending on whether the pair performed better or worse than predicted. This paper describes a
simple algebraic transformation which makes allowance for the relative strength of a player’s partners. This
results in a single measure of how a player performed against his direct opponent. This can then be used in a

ratings program as if they were singles results.

Keywords: tennis, exponential smoothing, player ratings

1. INTRODUCTION

At the second MCS conference | made a case for an
adjustive tennis rating system based on margin of
victory that rated players from a beginner to the
world’s Number 1 (Clarke 1994). That paper
suggested an exponential smoothing system, similar
to the Elo rating system used in chess (Elo 1978).
Unfortunately, while some work has been done, little
progress has been made in implementing any
practical system. Some papers have looked at how
the method performs within a restricted range of
player abilities. (Bedford and Clarke 2000)
compared the performance of an exponential
smoothing method with the ATP ranking in
predicting the winner of each match in major
tournaments. They found the method performed
slightly better than the ATP rating for both
predicting match winners and tournament seeding.
(Clarke 2009; Clarke 2011) used the season’s results
of a suburban doubles competition to rate all 52
players in the section. An exponential smoothing
method adjusts the rating up or down depending on
how the result compares with that predicted by the
ratings. Here the average of the two players’ ratings
was compared with that of their opponents’, and
each player adjusted by the same amount. The final
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ratings obtained had a high correlation with those
obtained using regression analysis to optimise
prediction of the set result. This demonstrated the
method could be applied successfully to obtain
individual ratings from doubles results. This is
necessary for a rating system that hopes to rate all
standards, as doubles play is the most common
format in non-elite tennis.

2 PREPROCESSING

One disadvantage of the system investigated above
is that both partners are rewarded/penalised to the
same extent for a good/poor team performance. The
adjustment to a player’s rating depends as much on
his partner’s performance as on his own. However in
many competitions it is possible to transform a
player’s performance to allow for that of his partner.
This paper suggests a method of removing the
‘partner effect’” from a player’s score, to give a
proper comparison of how he has gone against his
direct opponent.

Consider a simple team competition consisting of
three players A, B &C. They play 3 sets, A&B,
A&C, and B&C against the similar pairings of the
opposition. Usually players measure how many sets
or games they are up on the day. However the
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performance of A over the day includes a
contribution from B & C. Thus A could do well
because his partners are much better than their
respective opponents. But this advantage can be
measured in the third set and subtracted from A’s
results. Similar adjustments for B and C produces a
measure of each player’s relative strength compared
to his direct opponent, his contribution to the team
winning margin.

Thus a player’s adjusted games up

= players actual games up — (partners winning
margin)

= Actual games up — (team winning margin —
players actual games up)

= 2*players actual games up — team winning margin.

For example suppose the winning margins are

A&B +6
A&C +2
B&C -2.

Which results in the team winning by 6.

Then A, B &C are respectively +8, +4, 0 up and C
could convince himself he has come out even
against his opposite number. Note 8+4+0=12, twice
the team margin as each set is counted twice.
However the adjustment above gives 10, 2, -6
showing that C has clearly been outplayed by his
opponent. Note that 10+2-6 = 6, the team winning
margin. Note effectively we have solved the
simultaneous equations a+b=6, a+c = 2, b+c = -2 to
give a=5, b= 1, c= -3. Since each player plays two
sets the contributions we calculated are twice these.

The competition considered in (Clarke 2011) is a
doubles competition is for teams of 4 men. The team
is entered on the card in some order 1, 2, 3 and 4
(usually, but not always, of decreasing ability) and a
match consists of each of the 6 possible pairs (1&2,
3&4, 1&3, 2&4, 1&4, 2&3) playing the
corresponding pair from the other team in a first to 8
(tiebreaker at 7 all) set. Thus each player plays 3 sets
against his direct opponent, each of these including a
different one of his teammates and his teammate’s
direct opponent.

Again, the principle is quite simple. A player’s total
margin on his 3 sets includes a contribution from
each of his other team members. But the total
margin in the other 3 sets in which he is not involved
includes 2 contributions from each of his team
members. We therefore subtract half that margin
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from the player’s margin to obtain his individual
performance measure.

Algebraically, we assume each set margin is made
up of a contribution from each player’s relative
standard compared to his direct opponent. Thus if
Player 1 is 4 games better than his opponent, and
player 2 is 3 games worse the estimated result is4-3
= +1 or 8-7. If these 4 unknowns are a, b, ¢, & d
then player 1’s total up on the day (call it player 1s
total margin)  will be  estimated by
(at+b)+(a+c)+(a+d) = 3a+ b + ¢+ d. To get the a we
need to remove the b + c+ d. But the other 3 sets in
which player 1 did not participate give a measure of
(b+c) + (b+d) + (c+d) = 2 (b+c+d). Thus to get 3a,
which is player 1°s contribution over the 3 sets we
take his total margin minus half the total margins in
the sets he did not play. Thus

Adjusted margin = (players total margin ) — %(
other 3 sets total margin)

This is probably the easiest formula for an individual
player to use and understand. For someone doing the
calculation for all team members the following is
probably better.

Adjusted margin

=(players total margin ) — %( other 3 sets total
margin)

= (player’s total margin ) — %( team margin —
players total margin )

= 15( 3*player’s margin - team margin)

Basically 3* players margin is 3*(3a+ b + c+ d) =
9a+ 3b+3c+3d and if you take away the team margin
= 3(a+ b + c+ d) you are left with 6a which is twice
player 1s measure of superiority (ie 3a).

So

Adjusted margin
margin)

Ya( 3*player’s margin - team

This is quite easy to implement on a spreadsheet if
you already calculate individual players up or down
on the day.

Note this is the same as that obtained by fitting the
above additive model to the six set results using least
squares. ie the estimates given by this simple
arithmetic calculation are the same as would be
obtained using regression analysis to minimise the
errors in predicting the set margin using the
algebraic sum of the players rating differentials.
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2 APPLICATION

Example: Scores are 82, 48, 82, 68, 68, 68 for a
team margin of +2. Players are up 10, 2, 0, -8
respectively (these add to 4, twice the team margin).
Applying the above formula we get adjusted figures
of 14, 2, -1, -13 (these add up to +2, the team
margin).

Note player 1 goes up as his partners are
significantly worse that their opponents (they lost
48, 68, 68). Player 4 goes down for the opposite
reason (his partners won 82, 82, 68). Player 2 is
unchanged as the sets he was not involved in (48,
82, 68) came out level — as a group his partners were
the equal of their opponents.

Note this is not saying Player 1 is better or played
better than Player 4. It just says that after removing a
partner effect, on the day player 1 was 14 games
better than his opposition number 1, whereas player
4 was 13 games worse than his direct opponent. For
all we know the opposition team number 4 may have
been far better than their number 1. It also assumes
that players play to the same standard from set to set
— | wish that were true. But over a season one would
expect those random fluctuations to even out.

As a second example consider the scores 48, 48, 28,
68, 28, 84 for a team margin of -18. Raw scores for
players are -16, -2, -6, -12 (total -36) and it looks
like all players have failed to hold their own. But
adjusted scores of -15, 6, 0, -9 (total -18) show that
player 3 has held his own, player 2 is up, and the bad
loss is all down to players 1 and 4 being badly
beaten by their respective opponents.

Adjusted
Player Setsplayed Games up Games up
EC 33 36 215
GM 24 -7 -19
SC 27 44 34
GB 33 43 45
JZ 27 -6 -26.5

Table 1. Individual players season results.

These adjusted figures can be used simply as a better
measure of a players performance against his direct
opponent, or as input to further analysis. For
example they could be used as input to a regression
analysis. The first 4 columns of table 1 are from
(Clarke 2009) and show the season’s totals for the
raw figures for each team member for the data as
presented in (Clarke 2011). The final 2 columns
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show the figures obtained by applying the
adjustment suggested above. Remembering that on
average the adjusted figures will be half the raw
figures (since each set is counted once rather than
twice), the dominance of GB and lack of same for
GM and JZ is highlighted by the adjusted figures.

3 EXPONENTIAL SMOOTHING

Clarke(2011) used a full regression analysis on the
complete association set results (276 observations)
which allowed for the individual players playing and
a home advantage to obtain player ratings. This was
used as the ‘gold standard” and the ratings obtained
compared to those using an exponential smoothing
method.

Exponential smoothing operates by adjusting
player’s ratings depending on a comparison of the
predicted and actual set result. As the previous
smoothing method used the 276 set results, the
adjustment had to be shared equally between the two
partners. Nevertheless the correlation between the
final season ratings and the ‘gold standard’ using a
smoothing constant of 0.2 was 0.76 when initial
ratings were set to zero, and 0.81 when initial ratings
were based on position first played.

Here we can use the adjusted figures to smooth each
player’s ratings directly against his opponent. The
data set reduces by a third to 184 (since we are using
the days 4 adjusted games up rather than 6 set
results). The final ratings give a correlation of 0.83
and 0.84 with the regression ratings depending on
whether initial ratings are set to zero or depend on
position first played, both slightly higher than those
obtained using the set results.

4 CONCLUSION

In many doubles competitions it is possible to make
a simple adjustment that removes the partner effect
and produces a proper comparison between a player
and his direct opponent. This could then be treated
in a similar manner to singles results in any rating
system. Here we show it gives reasonable results in
an exponential smoothing system.

As well as giving better results, this method has the
advantage that not all 4 players involved in the
match have to be in the rating system. The effect of
each player is isolated against his direct opponent, so
a player and his direct opponent’s rating can be
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adjusted even if ratings for the other players are not
available. This might be important in the
implementation of any universal rating scheme,
where it would be expected, particularly in lower
standard matches, that many players may not have a
rating.
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Abstract

Whether the probability of winning a point on serve should be considered constant or variable remains
debated. Newton and Aslam (2006) addressed this question by altering the probability on the most and least
important point in the game by an arbitrary value of twenty percent. In conclusion, they found that varying
probabilities does not dramatically alter the probabilities predicted from a pure iid model. A limitation of
Newton and Aslam’s research is they selected an arbitrary value of twenty percent without any verification,
where this paper will provide analysis on the effects of selecting various values. This research extends on
Newton and Aslam’s work by evaluating the effectiveness of varying the winning probability of a point on
serve. The results indicate that the degree of change impacts the likelihood of winning the set and/or match.

Keywords: Importance, point probability, tennis.

1.INTRODUCTION

Tennis is a popular sport as a spectator, recreational
activity and also for sport modellers. Mathematically
speaking, the game of tennis is an attractive sport to
model as there are only two players to take into
consideration. Various models have been developed
to forecast the winner of the match. Typically, these
models assume the probability of winning a point on
serve is independent and identical distributed (iid),
where the probability remains constant for the entire
match (Barnett and Clarke 2002, Carter and Crews
1974, Fischer 1980 and Schutz 1970). Much debate
surrounds the issue of assuming iid (Jackson and
Mosurski 1997 and Klaassen and Magnus 2001).
Klaassen and Magnus (2001) found that winning the
previous point has a positive effect on winning the
current point, and those “important” points are more
difficult to win for the server than less important
points.

Various studies have analysed the effect of altering
the probability of winning a point on serve (see
Morris 1977, O’Donoghue 2001, Pollard and Noble
2002, 2004 and Viney, Bedford and Kondo, 2013).
Overall, the results found that expending more
physical and mental effort on important points and
relaxing on unimportant points increases the chances
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of winning the game. Morris (1977) developed an
approach to calculate the importance levels at a
point, game, set and match level using the Markov
Chain model. Importance of a point is defined as the
difference in the probability of winning and losing
the current point (Morris, 1977). Morris outlined that
increasing the probability of winning a point on
serve from 0.60 to 0.61 on the important points and
decreasing from 0.60 to 0.59 on the unimportant
points resulted in increasing the probability of
winning the service game by 0.0075.

Extending this concept, Newton and Aslam (2006)
applied a Monte Carlo simulator to determine
whether increasing or decreasing the probability of
winning a point on serve on the most and least
important point by twenty percent was more
effective than the iid Markov Chain model. Newton
and Aslam found that this approach increased the
probability of winning greater than the pure iid
model (Markov Chain) as the most important point
occurs more frequently. The overall conclusion of
this research was that varying probabilities does not
dramatically alter the probabilities predicted from a
pure iid model. While the iid assumption is not
perfect, in practise, it appears to perform quite well
and the inclusion of non-iid models may introduce
unanticipated problems (Newton and Aslam, 2006).
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A limitation of Newton and Aslams research is they
selected an arbitrary value of twenty percent without
any verification. Thus, the aim of this research is to
empirically validate Newton and Aslam’s findings
and to perform an extensive analysis on the effect of
altering the probability of winning a point on serve
at various intensities.

2. METHODS

The main objective of this paper is to validate and
perform an extension analysis on Newton and
Aslam’s (2006) research. Newton and Aslam
developed a tennis Monte Carlo simulator, where a
random generating value is produced to determine
the winner of each point in the match. Newton and
Aslam altered the probability of winning a point on
serve using the concept of point importance. How
important the current point is in relations to a point,
game, set and match level can be calculated using
the Markov Chain model, which was developed by
Morris (1977). Point importance is the difference
between the probability of the server winning and
losing the current point (a,b), which is represented as
follows:

IPoint(a’b) — PGame(a +1, b)
—pSame(q b + 1) (1)
To alter the probabilities, they adjusted Player A’s
probability to win a point on serve by an arbitrary
value of twenty percent on the most important point
in the game, 30-40 and decreased by the same value
on the least important point, 40-0. Once the point
has concluded the probability returned to the initial
value for the next point. It’s important to note that
the least important point only occurs once in the
game, though the most important point can occur an
infinite number of times as, for example 30-40 is
equivalent to 40-Ad.
To replicate Newton and Aslam’s work a Monte
Carlo simulator was developed using @Risk, an
add-on for Microsoft Excel (Viney, Kondo and
Bedford, 2012). To determine whether adjusting the
probabilities by twenty percent is the most effective
approach,  various  arbitrary  values  were
implemented. Probabilities were adjusted by
quantities of 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.
To determine the effectiveness of all approaches it
was compared against the Markov Chain model,
where the probability of winning a point on serve
remains constant for the entire set, due to the
assumption of independence and identical
distribution (iid). The Markov Chain model is
typically used to predict outcomes of tennis matches
before and during the match. Barnett, Brown &
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Clarke (2006) applied the properties of the Markov
Chain to derive a recursive formula to calculate the
probability of winning from any state within a game,
set and match.

In terms of a game, the probability of Player A
winning the game at point score (a, b) is given by:

P§*™e (a,b) = pP§™e (a + 1,b) +
(1-pPi™(@b+1) (2

with boundary conditions:

P§ame(q,p) =1ifa=4,b <2
P§*m*(a,b) = 0if b= 4,a <2
2

4
Pieme(3,3) = e

where p is the probability of Player A winning a
point on serve which remains constant for the entire
match.

In similar fashion, the probability of either player
winning a tiebreak set can be calculated using a
Markov chain. Let P-5¢¢(c, d) represent the
conditional probability of Player A winning a
tiebreak set from game score (c, d) when Player A is
serving. It is expressed as followed:

P}.Set(c’ d) — Pfamepé‘.b‘et(c + 1’ d)
+(1 — pfameyplset(c,d + 1) (3)

with boundary conditions:

PIset(c,d)=1ifc=60<d<4,c=7,d=5
PlSet(c,d)=0ifd =6,0<c<4,c=5d=7
P}.Set (6 6) — PATL'e—break

where P{%™erepresents the probability of Player A
winning a game on serve and P} “~b¢akrepresents
the probability of Player A winning a tiebreak game.
For a detailed explanation, see Barnett, Brown &
Clarke (2006).

3. RESULTS

To determine whether adjusting the probabilities by
twenty percent on the most and least important point
is the most effective approach, various values were
implemented. Probabilities were adjusted by
quantities of 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.
Adjusting Player A’s probability of winning a point
on serve at (30-40) is as follows:

pa(23) = pa(23)+ 6 (4)

where 6 = 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.
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Adjusting Player A’s probability of winning a point
on serve at (40-0) is as follows:

paB,0) = pa3,0) - 6 ®)
where 8 =0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.
Traditional point scoring format of 0, 15, 30, 40 and
game is represented as 0, 1, 2, 3, and 4, respectively.

For example, when Player A has reached the score-
line 40-0 and theta is 0.30, the player will decrease
in performance by thirty percent. While at the score-
line 30-40 and 40-Ad, Player A will increase in
performance by thirty percent. Theta did not exceed
thirty percent, as the player should already be
playing at a substantial level to have a chance to win
the match and increasing more than thirty percent
would be deemed an unreachable target.

Table 1 displays a comparison of all approaches in
altering the probability of winning a point on serve
in a game situation. The theta value selected
determines the amount of change in probability. The
higher the theta value the larger the difference of
change.

Table 1: A comparison between all approaches of
the adjusting the probability of winning a point on
serve in a game

Score  Markov Theta Value
005 010 015 020 025 0.30
0-0 0.60 060 060 060 060 0.60 0.60
15-0 0.60 060 060 060 060 0.60 0.60
30-0 0.60 060 060 060 060 0.60 0.60
40-0 0.60 055 050 045 040 035 0.30
40-15 0.60 060 060 0.60 060 0.60 0.60
40-30 0.60 060 060 060 060 0.60 0.60
40-40 0.60 060 060 060 060 0.60 0.60
40-Ad 0.60 065 070 075 080 085 0.90

Analysis was initially performed to outline the effect
of altering the probability of winning a point on
serve by a particular value. Morris (1977) analysed
the effect and gains achieved on increasing effort on
different points in a game.

The effect of Player A increasing effort on the most
important point in the game at 30-40 in respect to
winning a service game, when Player A’s
probability of winning a point on serve is 0.60, is as
follows:

PEmE(0,0) = P£9™(0,0) +
(& X N3y X I2,3)) (6)
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where ¢ is the effort contributed where £ € [0,0.30]
at every 0.01 interval, N(, 3 is the expected number
of times (2,3) is played in one game, N 3y =0.443
and I, 5y is the importance of the point in the game
at (2,3), Iz3 = 0.6923. Player A’s probability of
winning a point on serve = 0.60.

The effect of decreasing effort on the least important
point in the game at 40-0 in respect to winning a
service game, when Player A’s probability of
winning a point on serve is 0.60, is as follows:

PETE(0,0) = PFA™(0,0)
(8 X N(3’0) X 1(3’0)) (7)

where ¢ is the effort contributed where ¢ € [0,0.30]
at every 0.01 interval, N oy is the expected number
of times (3,0) is played in one game, N34y = 0.216,
and I3y is the importance of the point in the game
at (3,0), I3y = 0.0492. Player A’s probability of
winning a point on serve = 0.60.

For a full explanation of the process and how N, )
is calculated refer to Morris (1977). To determine
the effect of altering the probability of winning a
point on serve, the initial probability was set at 0.60
and ¢, the effort contributed, ranged from zero to
0.30, at every 0.01 interval. Figure 1 displays the
effect on Player A winning a standard service game
when either increasing and/or decreasing their
probability at the most and least important point.
The combine line in Figure 1 represents the effect of
adjusting both the probability on the most and least
important point. Player A’s starting probability was
0.60 which results in the probability of winning a
service game of 0.7357. As represented in Figure 1,
as the effort increases on the most important point,
the greater the probability of winning a game in
comparison to decreasing effort on the least
important point. For example, if a player decides to
increase his performance by twenty percent on the
most important point at 30-40, it results in increasing
their probability of winning the game from 0.7357 to
0.7970. Whereas decreasing by the same amount
alters the probability of winning the game from
0.7357 to 0.7336. Overall, with every 0.01
incremental change of probability to the most/least
important point results in an increased probability of
winning a standard service game by 0.003, when the
initial probability was 0.60.
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— Mostimporant O S€TVe in respe_ct to V\_/inning the first game and set.
---Leastimpotant  1€N thousand simulations were performed at the
~ ~Combine commencement of the set with Player A serving
first. Ten thousand simulations were chosen as
Viney, Kondo and Bedford (2012) found that
simulating greater than ten thousand points,
decreased the error rate. Both players’ starting
probability to win a point on serve was 0.60, where
Player A’s probability is altered on the most and
least important point in the game by 0.05, 0.10, 0.15,
0.20, 0.25 and 0.30. To compare the effects of
altering different numerical values, all simulations
were linked together, so the same simulated value is
applied for accurate analysis. Table 2 displays the
difference in adjusting the probability of winning a

0.8257

0.807

0.7757

0.757

Probability to win a standard game

0.7257

0 W A A i P A ey point on serve in respect to the most and least
cddddcsdcsd30ssa important point. Player A is assumed to win the first
Adjustment service game and set. Table 2 represents a linear

relationship whereas theta increases the probability
of Player A winning their service game and set both
increase. For example, when adjusting the
probabilities by twenty percent, Player A’s
probability to win their service game and set was
0.804 and 0.602, respectively.

Figure 1: The effect of adjusting the probability of
winning a point on serve at the most, least and
combining both most and least important point in a
standard service game.

Simulation analysis was performed to determine the
effect of adjusting the probability of winning a point

Table 2: Comparing the difference after adjusting the probability to win a point on serve in respect to Player A
winning their first service game and the set.

Markov ~ 0.05  0.10 0.15 0.20 0.25 0.30
Wins 1st service game 0.733 0.749 0.768 0.783 0.804 0.825 0.852
Wins set 0.499 0518 0541 0570 0.602 0.638 0.678

To determine how each approach performs when a To analyse the effect of streaking, both player’s
player enhances or deteriorates in performance, initial probability of winning a point on serve was
streaking analysis was carried out. Streaking 0.60 and only Player A’s probability was adjusted.
analysis is a concept applied in the simulator to alter This approach also implements the process of
Player A’s performance by a particular value. Player altering the probabilities on the most and least

A’s performance was altered to both increase and important point by various theta values. Table 3
decrease at a level of two, four, six, eight and ten displays the streaking effect for Player A, when the
percent. This streaking effect can be applied to any initial probability of winning a point on serve is 0.60
phase of the match, but for this research streaking with a streaking effect of four percent and Theta at
was applied for the entire match. 0.05. For example, at the least important point in the

game, 40-0, regardless which direction we alter
Player A’s increasing streaking effect is represented performance, the probability is decreased by five
as follows: percent due to the point being the least important in
Po=P+0 (8) the match. Thus, the updated probability to win a
point on serve is 0.59 and 0.51 for increasing and
and Player A’s decreasing streaking effect is as decreasing performance at four percent, respectively.
follows:
Po,=P,—o0 9)

where = 0.02, 0.04, 0.06,0.08 and 0.10 .
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Table 3: An example of streaking analysis with a
streaking effect of four percent with theta increasing
by 0.05 when the probability of winning a point on

serve is 0.60.
Score Normal Increase Decrease
0-0 0.60 0.64 0.56
15-0 0.60 0.64 0.56
30-0 0.60 0.64 0.56
40-0 0.60 0.59 0.51
40-15 0.60 0.64 0.56

Table 4 displays the streaking effect on all
approaches with different streaking intensities. It
represents a linear relationship where as you
increase the streaking value the larger the difference
recorded. For example, when altering the probability

by twenty percent with a streaking effect of ten
percent, the decrease difference is 0.344 as opposed
to 0.245 for the increased difference. Comparing
between increasing and decreasing performance, the
results shows that overall the streaking -effect
difference is greater when decreasing Player A’s
performance. It’s interesting to note that as we
change from a decrease to an increase in
performance, the ranking of difference changes. For
example, when Player A’s performance decreased,
Markov and 0.05 recorded the lowest difference,
whilst as the performance increased greater
differences emerged.

Table 4: Streaking effect on increasing and decreasing performance

Streaking effect

Approaches

-0.10 -0.08 -0.06 -0.04 -0.02 0.02 004 0.06 0.08 0.10

Markov 0.320 0.257 0.201 0.150 0.071 0.071 0.132 0.191 0.242 0.290
5 0.318 0.257 0.203 0.147 0.069 0.070 0.129 0.190 0.239 0.273

10 0.327 0.262 0.202 0.144 0.071 0.070 0.131 0.183 0.237 0.262

15 0.333 0.264 0.204 0.147 0.070 0.074 0.133 0.180 0.224 0.256

20 0.344 0.275 0.207 0.149 0.067 0.071 0.123 0.171 0.215 0.245

25 0.354 0.275 0.210 0.138 0.062 0.066 0.121 0.164 0.199 0.236

30 0.359 0.278 0.211 0.139 0.058 0.059 0.112 0.149 0.180 0.213

4. DISCUSSION average difference from the Markov model for the

To obtain a full understanding of how all approaches
forecast the outcome of a match, a case study was
applied. Ten thousand simulations were performed
at the completion of each service game in the match.
The case study chosen was when Mikhail Kukushkin
was the underdog and defeated Andreas Seppi 6-1,
1-6, 6-4, in the semi-finals at the Kremlin Cup in
Moscow. Figure 3 compares all approaches to win
the match at all game scores in the match. Overall all
approaches follow the same trend with the Markov
Chain model for the entire duration of the match.
For a deeper analysis on the relationship of all
approaches in this case study, we performed analysis
one set at a time.

At the commencement of the first set, Kukushkun
started as the underdog and won the first set 6-1.
Kukushkun only lost three points on serve, whereas
Seppi lost eleven. All theta values followed the same
trend as the Markov model (Figure 3). The absolute
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entire set was 0.004 to 0.014 for Theta 0.05 to 0.30,
respectively. Kukushkin won both of his first two
service games of the match without losing a point.
After the completion of Kukushkin’s second service
game, the Markov model recorded the largest
difference of the probability of winning the match at
the commencement of the match of a difference of
0.05 and Theta 0.05 recorded the second largest
difference at a value of 0.04. Thus in this scenario,
no cases accurately reflected Kukushkin’s current
performance from pre match predictions. At 2-1,
Kukushkin broke Seppi’s serve and Theta 0.20, 0.25
and 0.30 recorded the maximum difference from the
Markov model at a value of 0.021, 0.030 and 0.031,
respectively. At the completion of the set all models
increased Kukushkin’s probability of winning the
match by an average of 0.281, with an average
increase difference from the Markov model of 0.009.
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Figure 3: Kukushkin’s (Player A) probability to win the match at all game scores in the match.

In respect to the second set, Seppi’s form improved
and only lost three service points on serve, while
Kukushkin lost thirteen points. Seppi won the set 6-1
and broke Kukushkin’s serve twice, at 0-1 and 0-3.
At the first break of serve, the larger the theta value
the larger the difference of change in Kukushkin’s
probability of winning the match, with a difference
of 0.008 to 0.041 from Theta 0.05 to 0.30. Although,
at the second break of serve, all approaches
decreased Kukushkin’s probability of winning the
match by on average 0.05.

In the third and final set there were a total of seven
breaks of serves, where Seppi lost four and
Kukushkin lost three. In all breaks of service, the
larger the theta value the larger the difference in
change of Kukushkin’s probability of winning the
match. For example, Kukushkin lost his first service
game at the commencement of the third set, where
the Markov and Theta 0.05 alter the probability by
0.207 and 0.213, respectively. While, Theta 0.25 and
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0.30 altered the probability by 0.254 and 0.275,
respectively.

In this case study all theta approaches altered
Kukushkin’s probability of winning the match in
respect to breaks of service games, though no
approach took into consideration how the service
games were won. For example, a server winning
their service game losing zero points is performing
at a greater level than a server winning their service
game from deuce. In respect to this case study
Kukushkin won two consecutive service games at
the eighth and fourth deuce. This indicates that he
was struggling to hold serve and consequently lost
his next service game to love.

In conclusion, this case study demonstrated that
when a break of service occurs, the larger the theta
value the larger the difference of change in the
probability of winning the match. However, no
approach displayed an accurate indication of how
the player was performing in the match. For



example, if a player was winning their service game
by losing zero or five points.

This research has provided valuable insight into the
effect of changing the probability of winning a point
on serve. Future research should determine the effect
of updating the probability of winning a point on
serve after every service point. This approach aims
to increase the accuracy of forecasting to obtain a
precise indication of how players are performing on
the day. Although no optimal value can be selected
from this research, this research displays a thorough
understanding of the effect of altering the probability
of winning a point on serve for a range of values.
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Abstract

This paper determines when the draw should be predicted for English Premier League football. Roughly one in
every four matches in the English Premier League ends in a draw, so it would be a great boost to the predictive
power of an Elo model to have a methodology of predicting the draw that is reliable. Initial research showed a
consistency in draws over time, suggesting they may be predictable. However the banding of probabilities
showed that draws were similarly likely across many probability bands, and that only one market-based band
had a draw likelihood that exceeded a one in three chance. Three strategies were tested against a control of
never picking the draw, with never picking a draw being the clear standout. Optimisation of these strategies
resulted in marginally superior predictive power by restricting the draw prediction to tiny ranges that captured
unusually high numbers of draws. Ultimately, it was deemed to be of no advantage to predict the draw.

Keywords: football, Elo model, draw, optimisation

1. INTRODUCTION

In the English Premier League, matches have three
possible results. These are the home team winning,
the away team winning, or a draw. This paper aims
to improve the predictive ability of an Elo model
by implementing a system which can predict when
draws will occur on top of determining whether the
home or away team is more likely to win.

If all English Premier League matches from the
opening day of the 2002-2003 season to March 2"
2014 are collated and the number of matches that
resulted in draws are counted, it’s seen that 1149 of
the 4456 matches in that timeframe have ended in
draws. This is a considerable number of matches,
equating to slightly over one in every four matches.
As a result, the maximum percentage of correct
predictions for a model that predicts win vs loss is
under 75%. To improve this percentage, there
needs to be a methodology for reliably predicting
draws. The aim of this paper is to determine
whether such a methodology exists when it comes
to predicting matches using an Elo model.
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Before the development of the methodologies for
when to predict draws, it is important to look at the
statistics of when draws occur. The table below
shows the proportions of drawn matches in each
season in the dataset.

Season Draws | Matches %
203 90 380 | 23.68%
304 108 380 | 28.42%
405 110 380 | 28.95%
506 77 380 | 20.26%
607 98 380 | 25.79%
708 100 380 | 26.32%
809 97 380 | 25.53%
910 96 380 | 25.26%

1011 111 380 29.21%
1112 93 380 24.47%
1213 105 380 | 27.63%
1314 64 276 | 23.19%
Total 1149 4456 | 25.79%

Table 1: Draws Split by Season
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The season with the most draws is the 2010-2011
season with 111 drawn matches, very closely
followed by the 04-05, 03-04 and 12-13 seasons.
2005-2006 clearly has the least draws, with just 77
matches ending level. No other season has had less
than 23% of matches end in a draw, with the
closest being the in-progress 2013-2014 season. It’s
clear that this number is fairly consistent from
season to season, with no real trend in the data.

Next, it’s worth checking whether draws are more
likely to occur at a certain time in the season. The
following table shows the proportions of draws in
each month of competition for the EPL.

Month Draws Matches | %
95 383 | 24.80%
106 400 | 26.50%
10 110 427 | 25.76%
11 132 483 | 27.33%
12 172 664 | 25.90%
1 121 465 | 26.02%
2 109 420 | 25.95%
3 76 403 | 18.86%
4 158 518 | 30.50%
5 70 293 | 23.89%
Total 1149 4456 | 25.79%

Table 2: Draws Split By Month

This table suggests that during the majority of the
season, the percentage of draws remains quite
constant. There are two values that are slightly
different from the typical proportion, which are the
18.86% for March and the 30.5% for April. The
initial reaction to this was that due to more matches
being played in April, fatigue may have been
causing matches to be more likely to end in draws,
while for March due to comparatively less matches
being played teams were better equipped to get a
result. However, when looking closer at the number
of matches played, March is not too dissimilar to
the other lower volume months, and April is far
from being the most matches in any month. Thus,
in absence of any logical reason for these
deviations, it’s assumed that these values are
merely a statistical quirk rather than a factor that
needs to be considered.

2. MODEL AND MARKET BANDING

As it’s been established that there are no key
factors that need to be controlled for in the draw
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predictions, the next stage is to compare how the
draw is distributed for the Elo model versus the
market predictions in the form of betting odds.
Firstly, the 3-way result probabilities are viewed to
determine whether the market ever predicts a draw.
The interesting thing is that in the 4456 matches
catalogued in the dataset, on only one occasion did
the market predict that the draw was the most likely
result. This was the match of Stoke hosting West
Brom on 16/03/13, for which bet365 offered odds
of $2.80 for a Stoke win, $3.25 for a West Brom
win, and $2.75 for a draw. This corresponds to a
35.357% probability of a draw after accounting for
the bookmaker’s margin. This match ended in a
draw as expected, with the final score being 0-0.
According to the Elo model this was a 55-45
matchup and according to the 2-way market a 54-
46 matchup in favour of Stoke, so it is quite an
even match up. However, there are numerous
matches which according to these probabilities are
more even, so it’s quite odd that just this one match
has the draw as the favourite. It suggests that the
draw may in fact be too unreliable to be predicted
with any confidence whatsoever.

The next stage is to compare how the draws are
distributed for both the 2-way market model and
the Elo model. The following graph shows the
frequency of draws for both of these models.

Frequencies of Draws in Each Probability Band

} ..mll””

WoH W oA om0 P I R
OOOOOOOOOOOOOOO

= ModelDraw

No. of Draws
%
k3

0OddsDraw

o

Probabnllty of Home Team Win

Figure 1: Frequencies of draws in each probability
band for 2-way market model (oddsdraw) and Elo
model (model draw).

The most draws occurred in the 0.65-0.7 band for
the Elo model (143 drawn matches), and the 0.6-
0.65 band for the 2-way market model (140 drawn
matches). It is interesting that the number of draws
seems to be centred roughly on the home ground
advantage adjusted probability. As this is just the
total number of draws for each band, the proportion
of draws needs to be checked to determine whether
this is just being skewed by the number of matches
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in each band. The proportion of draws in each band
is shown in the graph below.

Proportions of Draws in Each Probability Band
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Figure 2: Proportions of draws in each probability
band for 2-way market model (oddsdraw) and Elo
model (model draw).

It is clear that when correcting for the number of
matches there is no longer a point where the draws
have a peak. The 2-way market has a slight
increase for matches just under 0.5, but this is not
particularly significant. The Elo model appears to
be over-represented for draws in matches where
there is a very strong favourite either home or
away, however it’s important to note that this is
primarily due to a relatively small sample size in
these bands. Overall, there’s a slight quadratic
curve to the percentages of draws, with the edge
cases typically being less likely to have a draw, and
the central cases having similar proportions of
draws. This does not bode well for attempts to
predict the draw as there is only a single band that
exceeds a one-in-three chance of a draw occurring,
which is the 2-way market for matches with home
win probabilities between 0.45 and 0.5.

Finally, the draw probability according to the odds
is compared to the home versus away split is
analysed. The primary purpose of this is to be able
to develop a probability of drawing from the Elo
model. The following graph is a scatter plot of
home win probability minus away win probability
versus draw probability.
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Plot of Pr(Home-Away) vs. Pr(Draw)
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Figure 3: Scatter plot comparing the home-away
probability differential to the probability of a draw
according to the market

This plot shows a clear quadratic trend for draw
probability when compared to the home-away
differential. The line of best fit is Pr(Draw) = -
0.245x% + 0.0025x + 0.3142, where x equals the
difference between the win probability of the two
teams. Using this equation, the probabilities that
are generated by the Elo model can be converted to
include a draw probability. So, using this equation,
a match in which the two teams have an equal
probability of winning will have a 0.3142
probability of drawing the match. These
probabilities will be used for one of the prediction
strategies outlined below.

Initial Draw Prediction Strategies

There are three initial strategies that’ll be used to
predict the draw. These strategies are as follows;

e pick the draw for the middle 25% of
probabilities (matches with win
probabilities between 0.375 and 0.625)

e pick the draw for the middle 25
percentiles (matches with win
probabilities between the 37.5" and 62.5"
percentile, corresponding to matches
between 0.577 and 0.699 win probability
for the home teams)

e  pick the draw for the 25% of matches
with the highest draw probability
according to the line of best fit to the
market odds

These strategies are based upon the fact that
roughly 25% of matches end in a draw, so if the
draw is perfectly predictable 25% of matches
should be predicted as a draw. The results of this
initial strategy are shown in the table below.

—t



Strike Rate
No draw 52.244%
Middle 25% Pr 49.753%
Middle 25th Percentile 48.654%
Upper quartile draws 50.135%

Table of strike rates for initial draw prediction
strategies

It is interesting to see that each of these strategies
performs worse than never predicting the draw. The
best performed of the strategies that picks draws
was the upper quartile draws, followed by the
matches with draw probabilities between 0.375 and
0.625, and worst performed was the middle 25"
percentile. Clearly too many matches are being
predicted as draws, so in the next step the range
and where the predictions should be centred will be
optimised.

3. OPTIMISED DRAW PREDICTIONS

Using the @Risk software, the optimal strike rate
for each strategy was search for. This was done by
changing the spread of matches that were predicted
as draws and in the case of the middle 25% and
middle 25" percentile where that spread was
centred. 10000 iterations were done, and the results
of this optimisation can be seen in the table below.

Strike Spread | Centre
Rate
No draw 52.289% 0 NA
Middle x% Pr 52.513% | 0.00265 | 0.526
Middle xth 52.536% | 0.00295 | 0.524
Percentile
Upper x percentile 52.311% | 0.00023 NA
draws

Table of optimised draw predictions

Here each of the various draw prediction strategies
exceeds the strike rate of never predicting the draw.
This appears to suggest that the draw should in fact
be predicted sometimes. However, note the
extremely small spreads of matches being predicted
as draws. For example, the middle x% pr is
predicting draws in matches where the home team
has a win probability between 0.523 and 0.529.
This is a tiny section of matches, a mere 43 (<1%)
of the 4456 in the data set. This suggests that
predicting the draw for this section of matches isn’t
actually a good strategy, rather a lucky one that just
happens to encapsulate a small cross-section of
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matches that has an abnormally high proportion of
draws.

Based upon these optimisation results, it seems
clear that using the Elo model as a basis for draw
predictions is not a strategy that is reliably better
than simply never picking the draw. Occasionally,
one might get lucky and stumble upon a very small
pocket of matches which happens to have a greater
than typical draw probability, but ultimately
attempting to predict the draw in this manner is not
beneficial. In other words, the draw is an event that
cannot be predicted with any confidence. This
validates the market solution of almost never
predicting the draw.

4. CONCLUSION

The draw is a frequent event in the English Premier
League. It’s a fairly constant variable from season
to season, and month to month. This consistency
suggested that predicting the draw may be possible,
as there are no major variations in the probability
of the draw. However, further analysis showed that
there were no bands of probability where the draw
became more likely than the probabilities of one of
the two teams to win. Notably only one band
exceeded a one in three probability, which was the
0.45-0.5 market band. Three strategies to predict
the draw roughly 25% of the time where tested
against a strategy of never predicting the draw, and
all fell considerably short. The three strategies were
optimised for maximum strike rate, but were only
marginally better than the no draw strategy due to
finding an extremely small band where an
abnormally high proportion of draws occurred.
Thus the best strategy of predicting the draw is in
fact to not predict the draw at all.
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OLYMPIC CHAMPIONS IN RUNNING, SPEED SKATING, ROWING
AND SWIMMING

Ray Stefani

California State University, Long Beach
Raystefani@aol.com

Abstract

Photos of past Olympic champions in running, speed skating, rowing and swimming show little difference in
physique over 80 years. Improvements in performance must therefore be due to better training and better
efficiency, the latter including coaching, technique and equipment. Physical laws were applied to the four
sports. For running and speed skating, if efficiency is constant, the power-to-weight ratio, P/m, improves
velocity. For equally trained men and women, the velocity ratio should equal their relative lean-to-weight.
Tested Olympian females were 92% as lean as their male counterparts while Olympic champion women ran
91% as fast as men for 1980-1988. In speed skating, women were 92% as lean, while their Olympic
champions skated 92% as fast as men for 1980-1988. If efficiency is constant for rowing, P / m*® improves the
cube of velocity as does P m'® for swimming. For rowing and swimming, assuming equal training and
efficiency, the theoretical velocity ratio was calculated using values from tested Olympians as to relative lean-
to-weight, relative body mass and relative drag coefficient. For rowing, relative cranking power was also
needed. For both sports, the estimated velocity ratio was approximately the 4/9" power of the body mass ratio.
The estimated swimming velocity ratio of 91% was exactly the velocity ratio of Olympic champions, 1980-
1988. The estimated rowing velocity ratio of 90% was exactly the velocity ratio for Olympic champions,
1992-2012. Female champions have improved from being 83% as fast as men 100 years ago in swimming to
being 89% as fast in running, 90% as fast in rowing and swimming and 92% as fast in speed skating. In
Olympia 2500 years ago, women ran a 500 ft course while men ran 600 ft, making women about 5/6 or 83% as
fast. Relative velocity has been remarkably constant over recorded history.

Keywords: Olympics, running, speed skating, rowing, swimming, power, gender differences,
velocity, power to weight, Olympic champions

1. INTRODUCTION the ancient Greek sports program for women.
Women competed on different days from the men.
At the Olympic Games, the men ran one or more
multiple of the stadia, a stadium length of 600
Greek feet. Our word “stadium” comes from that
measure. At the women’s Heraia Games, the stadia
was shortened to 500 Greek feet. If women were
considered to cover 500 feet in the approximate the
same time that men would cover 600 feet, then the
relative velocity of women was 500/600 of 83%,
some 2,500 years ago.

In 1896, women did not compete in the first modern
Games, due this time to the reticence of the Games
founder, Baron de Coubertin. It only took four years

Men and women have competed in athletics (track
and field) for at least 2,500 years. The ancient
Olympics (actually one of the four Pan-Hellenic
Games) began at Olympia in 776 BC. That
competition was dedicated to the male god Zeus,
which meant that only men could compete, under the
prevailing religious practices of that day. Unmarried
women could and did attend. A few centuries later, a
second set of Games were created at Olympia for
those unmarried women, called the Heraia Games,
dedicated to Zeus’ mythological wife, Hera. A group
of 16 women was permanently empowered to run
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for women to start competing in a variety of
Olympic sports in 1900. Swimming began for
women in 1912, athletics in 1928, speed skating in
1960, 1000 m rowing in 1976 and 2000 m rowing in
1988. This paper will explore gender differential
behaviour in those sports using starting dates of
1912, 1928, 1960 and 1988 respectively.

Early work at understanding winning performances
in general and gender differences in particular was
presented in Stefani (2000). The laws of
hydrodynamics were used to derive relationships for
the power output in rowing, based on elapsed time.
Stefani (2002) presented a preliminary derivation of
the power output in running, jumping and
swimming, along with estimated female/male
percent differences in power as developed by
Olympic champions.

Stefani (2006) covered a much more sophisticated
derivation of power output in running, jumping and
speed skating (ground effects events) and in rowing
and swimming (hydrodynamic events). The ratio of
(women’s power) / (men’s power) was found
employing two methods and the two sets of results
were compared. The power ratio based on
performances agreed with a power ratio based on
physiology, specifically on relative (lean body mass
/ total body mass), using Olympic data from 1976-
2004. It was shown that the power ratio was not as
favourable for women in earlier years than the recent
ratios consistent with physiology, suggesting
unfavourable differences in training and efficiency
in the past. Stefani (2007) extended those results by
listing the skills required for each event, suggesting
which of those improved, and estimating how past
champions could have remained competitive in more
recent years they had been privy to better efficiency.
A recent paper, Stefani (2014), took a more practical
approach for athletes and coaches, using
power/weight analysis which included training and
efficiency as variables. While an athlete is in
training, improvements in ergometer power/weight
can be easily measured and then used to directly
estimate improvements in performance, without
resorting to a time trial. In addition, upper body
strength was included (measured by cranking power)
which relates to success in throwing and rowing.
That paper covered running, jumping, throwing,
swimming and rowing.

Stefani (2012) attacks the issue of whether high-tech
swim suits may have been a cause of faster
swimming; the conclusion is that the swimmer not
the suit is responsible for faster times.
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This current paper will use a performance measure
that is both intuitive and informative: the velocity
ratio of women/men for Olympic champions. The
laws of physics are used in Section 2 to derive the
velocity ratio for the ground reaction events of
running and speed skating, due to training,
efficiency and physiology. A similar approach is
taken in Section 3 for two hydrodynamic events
(rowing and swimming). Increases (decreases) in
that velocity ratio occur when women improve faster
(slower) than men. Section 4 includes salient
conclusions.

2. RUNNING AND SPEED SKATING

A more complete explanation of the following
physical laws and kinesiology analysis, along with a
supporting bibliography, may be found in Stefani
(2007, 2014). A bibliography of the references cited
in Tables 2-5 may also be found in Stefani (2007,
2014), except for a few additional works cited at the
end of this paper.

The power generated by a running or speed skating
athlete can be measured on a treadmill or cycling
ergometer. Studies show that ergometer power, P,
depends on the athlete’s lean body mass, LBM, and
training (Tr) as given in (1).

P=LBMTr 1)

That is, P/LBM is a constant for equally trained
athletes of both genders. Enhanced training can
improve that ratio for both genders.

A fraction of that generated power, P e, is applied in
running and speed skating to the centre of gravity of
an athlete with body mass m, where e is the
efficiency less than or equal to one. Efficiency
depends on some combination of coaching,
technique and equipment. That applied power is
“absorbed” by that body mass, resulting in a
velocity, v in (2), using Newtonian mechanics. The
angles in (2) measure the direction of the forward
movement of the centre of gravity. These angles
differ for running and speed skating,

P e = m v f(angles) constants

()

Side-by-side photos show little physical difference
between Olympic champions of the past and present.
The increases in velocity must then have followed
from some combination of better training, coaching,
technique and equipment. If %I/O denotes the
percent improvement per four-year Olympiad, the
introduction of the rowing ergometer (a training aid)
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in 1980 increased average %I/O by 508%.
Equipment such as the fibreglass pole in 1984 added
a one-time 419% to %I/O in the pole vault as did the
clap skate in 1998, adding 58% to speed skating
%I/O. The Fosbury Flop, a high jumping technique,
added an average of 83% when introduced for men
in 1968 and for women in 1972.

If both sides of (2) are divided by m, then P/m, the
power-to-weight ratio, depends directly on v for
fixed e. That is, each 1% increase in P/m while
training implies a 1% increase in velocity if
efficiency is maintained.

The goal here is to analyse the velocity ratio of
women/men, which follows from (1,2), where LTW
denotes lean-to-weight given by LBM/m and it is
assumed that angles are the same for both genders.
Of course constants cancel.

leVM = (LTWW/LTWM) (TrwlTrM) (eW/eM) (3)

When men and women are equally trained and
efficient, (3) depends only on relative lean-to-weight
LTWw/LTWy. When the velocity ratio is smaller
than given by LTW\/LTW), then training and/or
efficiency for women would not be as good as for
men. Table 1 contains the average velocity ratio for
Olympic champions in running and speed skating.
Five periods of Olympic history are used. The first
period spans WW1 ending with the second post-war
Games when competition had recovered. The second
period is similar for WW2. The third period covers
the Cold War while the fourth period covers the two
boycotted Games followed by recovery in 1988. The
fifth period covers the post-1988 anti-doping era. As
mentioned earlier, this paper explores gender
differential behaviour beginning with 1912 for
swimming, 1928 for running, 1960 for speed skating
and1988 for 2000m rowing.

Table 2 contains studies from which relative LTW
(relative leanness) can be calculated for running and
speed skating. For speed skating, women were 92%
as lean as men for period four and female champions
skated 92% as fast, constant with equal training and
efficiency. Women gained from period three to
period four (89-92%) and then stayed 92% as fast in
the current period.

In running (rounded to two digits) women were 92%
as lean in period four while female champions ran
91% as fast. Similarly for period five, women were
91% as lean but champions ran 89% as fast. The
actual difference was 1.5% each time. Assuming
equal training, women were 1.5% less efficient than
men. Why? Female runners are six times as likely to
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have an ACL tear as men because their pelvis and
hips are wider than for men, relative to height,
causing relative overstriding and some knee rotation,
Williams and Cavanagh (1987), Gilland (2009),
Hewitt (2010). The data in Table 1 provides a
scaling for that overstriding. Because a female
runner has her leg a bit straighter than a man at
stride’s end, women apparently put 1.5% of the
force, intended to move the athlete forward, into the
knee and ankle joints, causing the female champion
to run 1.5% slower than suggested by relative LTW.
The take-away message is that female athletes
should strengthen knees and ankles to protect against
potential injury.

Women apparently gained in training and efficiency
from period two to four (88% to 89% to 91%).
Having achieved equality, periods four and five
imply a velocity ratio driven by physiology (LTW
and overstriding). Why did women lose 2% in
period five, returning to a velocity ratio of 89% as in
period three? Period four may be the statistical
equivalent to the chemical anti-doping passport,
wherein a change in blood chemistry suggests
doping. We know that steroids were rampant in
period four. Anti-doping efforts have ramped up in
period five. It may be that women gained more
LTW than did men in period four, as women were
less lean to begin with and would benefit more with
steroid use. The former East Germany was a
consistent gold medal winner in women’s running
events from 1980-1988. Former East German
authorities have admitted doping before unification.

3. ROWING AND SWIMMING

The law of hydrodynamics is to rowers and
swimmers what Newtonian mechanics is to runners
and speed skaters. The kinesiology of a rowing
ergometer differs from that of a cycling or treadmill
ergometer. That is, P/LBM is not equal for equally
trained women and men. An additional cranking
effect, Cr, is present. Women are at a disadvantage
due to relatively less upper body and shoulder

volume. The power registered on a rowing
ergometer is given by (4).
P=LBMTrCr 4)

As in (2), a fraction of that power is applied to a
racing shell causing it to move forward with velocity
V.
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Period Years Running Speed Skating Rowing Swimming
Period LTW Velocity | LTW Velocity [ Estimate | Velocity | Estimate | Velocity

Ratio Ratio Ratio Ratio [ N=1789 | N=49 | N=1815| N=192
N=156 N=95 [ N=51 N=46

\WW1-Recovery | 1912-24 83

\WW?2 - Recovery | 1928-52 88 87

Cold War 1956-76 89 89 9

Boycott-Recovery | 1980-88 92 91 92 92 90 91 91

Post 1988 1992-14 01 89 92 90 90 90 90

Table 1 Velocity ratios of female/male Olympic champions and estimated ratios based only physiology

Source Event Men Women LTWwW/LTWy (sd)
N %Fat (sd) N % Fat (sd)

Fleck (1983) Running 24 6.4(1.2) 21 13.7 (3.6) 92.1(2.5)

US Olympians

Vucetic et al. (2008) | Running 41 5.8 (2.4)

Elite Athletes

Molina (2007) Running 70 14.2 (1.3) 91.0 (1.8)

US College Athletes

Fleck (1983) Speed Skating 31 11.4(3.2) |20 18.1 (5.0) 92.4 (4.5)

US Olympians

Yoshiga and Rowing 120 11.9(6.2) |71 20.9 (5.2) 89.8 (5.7)

Higuchi (2003) Elite

Athletes

Fleck (1983) Swimming 39 12.4(3.7) | 41 19.5(2.8) 91.9 (3.5)

US Olympians

Van Erp-Baartet al. | Swimming 20 10.7(3.3) | 50 21.4 (5.6) 88.0 (4.4)

(1989) Elite

Athletes

Table 2 Relative Lean-to-Weight Ratio LTW (LTW = LBM/m =100 - %Fat)

Source Men Women Cdw/Cdyy
N Cd(sd) N Cd(sd)
Toussaint (1988) 32 .54(.09) 9 47 (.07) 1.170
Zampora (2009) 84 .353 66 .318 1.110
Mean 1.123
Table 3 Drag Coefficient Ratio for men/women
Study Men Women Crw/Cry
N m LBM Time N m LBM Time
Equal m 57 63 436 37 62 477 0.850
Equal LBM | 20 52 446 10 51 466 0.930
77 47 0.890




Table 4 Cranking Ratio Cr for elite rowers (Yoshiga and Higuchi, 2003)

Men Women
Source Event N m (sd) N m(sd) | my/ my
Mc Ardle (1981) Runningand | 354 71.8 181 57.5 1.249
1964 & 1968 Jumping
Olympians
Mc Ardle (1981) Swimming 516 73.1 300 58.3 1.254
1964 & 1968
Olympians
Pyne (2000) Swmming 43 81.8 (7.0) 42 64.8(6.1) | 1.262 (.115)
1988 & 1994
Australian Olympians
US Olympians 2000 Rowing 19 92.5(8.1) 19 73.3(6.7) | 1.261 (.114)
932 542 1.256 (.11)

Table 5 Body mass ratio for women/men

The area in contact with the water, approximately
the 2/3 power of body mass due to buoyancy,
induces drag. The equation of motion is given by
(5), where Cd is the drag coefficient.

2/3

P e = v® m?® Cd constants

®)

If both sides of (5) are divided by m*?, then P/m??
becomes the rower’s power-to-weight parameter,
equal to V* if efficiency e remains constant. Rowers
can be ranked for placement on a racing shell, based
on rowing ergometer P/m?* as described in Stefani
(2000, 2014). Every 1% improvement in that
parameter implies a 1/3% increase in velocity, for
constant e. The velocity ratio (6) follows from (4,5),
where constants cancel.
vV = [(Tra/Trv)(ewlem)] ¥
[(LTWW/LTW)(Cr/Crin)]™ (mw/ my )™ (6)

If women are as equally trained and efficient as men,
in rowing, then the velocity ratio would be given by
the second line of (6). Table 2 (LTW), Table 4(Cr)
and Table 5 (body mass) provide the values needed.
The values of Cry/Cry in Table 4 are found by
solving (6) using the tabular data. For period five,
(LTWW/LTW\)(Crw/Cry) is given by .898 x .890 or
.799. That is essentially the same as my, / my, which
is 1/1.256 or .796. For equal training and efficiency,
the estimated velocity ratio of (6) is the same as
(mw/ my)*®, or 90%, agreeing to two digit accuracy
with the observed velocity ratio of 90% for rowing
in period five. Women appear to have competed
with equal training and efficiency as men over both
periods, since the wvelocity ratio is accurately
estimated by physiology only.

For swimming, a treadmill or cycling ergometer can
be used to measure power, as given by (1). The
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fraction of power applied is more complicated than
just P e for swimming. A swimmer applying force
while immersed in water does so with a propelling
efficiency much like that of the propeller on a boat,
Stefani (2014), depending on the size of the
swimmer. Thus a swimmer’s efficiency becomes e
= m es where es depends on coaching, technique and
equipment/conditions. The applied power equation
is given by (7).

2/3

P mes = v® m”® Cd constants

(7)

If the body mass terms are collected on the left side
of (7), then a swimmer’s power-to weight
relationship is P m~°. Every 1% improvement in that
parameter implies a 1/3% increase in velocity, for
constant es.

The velocity ratio follows from (1,7).

ViV = [(Trw/Trv) ewlem)]
[(LTWW/LTW\)(Cdm/Cdw)]3(mw / mu)*® (8)

If women are as equally trained and efficient as men
in swimming, then the velocity ratio would be given
by the second line of (8). Table 2 (LTW), Table
3(Cd) and Table 5 (body mass) provide the values
needed. For period four, (LTWy/LTW)(Cdw/Cdw)
is.919 x 1.123 or 1.011. For period five, that term is
.880 x 1.123 or .996. Both values are close to one.
The surprising conclusion is that for equal training
and efficiency, the velocity ratio in swimming is
closely approximated by (mw/mu)*®, the same
approximation as for rowing.

Completing the estimated velocities, we obtain 91%
for period four and 90% for period five, both of
which agree with the actual average velocity ratios
in Table 1 for swimming.

1/3
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It appears that women acquired better training and
efficiency from periods one to three, as their speed
relative to men increased from 83% to 90%. The
relative velocity was nearly the same for the last
three periods, agreeing with physiological estimates,
indicating equality of training and efficiency.

4. CONCLUSIONS

Side-by-side photographs of Olympic champions
taken about 80 years apart show little change in
physiology. The large increases in velocity in
running, speed skating, rowing and swimming are
therefore due to improved training and efficiency
(coaching, techniques and equipment). The laws of
physics were used to derive the velocity ratio of
women/men, in terms of training, efficiency, and
physiological variables.

Satisfying the assumption of equal training and
efficiency, today’s Olympic champions display a
velocity ratio for women/men closely approximated
by physiology alone. In the hydrodynamic events of
rowing and swimming, female elite athletes have
90% the value of men for the 4/9™ power of their
body mass ratio and female Olympic champions are
90% as fast. Female speed skaters are 92% as lean
as men and their Olympic champions are 92% as
fast. Female runners are 91% as lean but run 89% as
fast, losing 1.5% by overstriding, induced by a
relatively wider pelvis. If we exclude the velocity
ratios for 1980-1988 in running and swimming, a
monotonic trend is evident as female athletes gained
in training and efficiency, increasing the velocity
ratio until differences were due only to physiology.
Female swimming champions gained from being
83% as fast in 1912-24 to being 90% as fast in 1956-
1976, the same as today (1992-2014). Female
rowers have been 90% as fast since 1980-1988.
Female speed skaters increased from 89% as fast to
92% as fast in 1980-1988, the same as today.
Female runners increased from 88% as fast for
1928-1952 to 89% as fast for 1956-1976, the same
as today. There was a bump up in 1980-1988 and
then down today for the velocity ratio for female
champions in running and swimming, the same time
period when East Germany dominated women’s
running and swimming. Former East German
athletes and officials have admitted doping which
gave female champions a boost in relative lean body
mass, explaining the boost in velocity.

Athletes in training can use a power-to-weight
measure to assess progress. For running and speed
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skating, each 1% by which P/m is increased,
velocity increases by 1%, for equal efficiency. For
each 1% that P/m** (rowing) and P m**® (swimming)
increases, velocity increases by 1/3% for equal
efficiency. Female runners should strengthen knees
and ankles to reduce possible injury.

Over the centuries, it has taken a great deal of effort
by female athletes and by fair-minded people of both
genders to provide a level playing field for today’s
female athletes. It is everyone’s job to keep it that
way.
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Abstract

This paper focuses on penalty counts in the ANZ Championship and how they vary according to the teams
involved, location and the umpires officiating the matches. The matches were split into four categories for
analysis. Of most interest was category 4 — New Zealand side versus an Australian side played in New Zealand
(and therefore with umpires from New Zealand). This group produced results that were pointedly different to
that of each of the other categories, with the away team conceding on average approximately 12 more penalties
than the home side. Category 4 proved to be significantly different to from each of the other three categories,
whilst none of the other categories were different from each other. This difference was comprised of
approximately 8 contacts and 4 obstructions on average per match. The reasons for this discrepancy are not
entirely clear, however it can be linked to crowd factors, umpiring bias, umpiring style differences and team
play style differences. It is anticipated this paper may help players, coaches and umpires better understand why
this discrepancy might exist and how to go about reducing its effect in the future.

Keywords: Penalties, Umpire bias, ANOVA, Netball

1.INTRODUCTION matches in New Zealand. There is a common
perception that umpiring interpretations are
different or at least that penalty counts are disparate
across the two countries. Possible reasons for why
this may include referee bias, crowd influence or
differences in play style across countries. There has
been a large amount of research in the past
surrounding crowd influence and the effect it can
have on umpiring decisions in other sports around
the world. Watching a match without sound;
therefore without the crowd noises and the
atmosphere which that creates, has been shown to
significantly reduce the number of fouls awarded to
the home side in association football (Nevill et al,
2002). The removal of sound also resulted in
umpires being less certain of their decisions. This
can therefore be linked in closely with home team
advantage, which is what clearly creates this
atmosphere as the home team will almost always
have the larger crowd support. Crowd density is a
large factor in football at least, as opposed to crowd
size or proximity (Goumas, 2014). The people in
the crowd most certainly believe that they can
influence the result (Wolfson et al, 2005) so it is
very possible that this may extent to influencing the
umpiring decisions on the court. The difference in
play style between the two countries is much more
difficult to discuss or prove — however it is
commonly accepted that New Zealand sides
traditionally play a defensive zone where as the
Australian sides play one on one defence. This may

Netball is an invasion sport played between two
teams, with seven players on court at all times (and
up to five players on the bench). The ultimate goal
of the game is to score more goals than the
opposition by placing to ball into your goal which
is a hoop placed at the top of a pole at each end of
the court. The ANZ Championship is widely
considered to be the highest level of competitive
netball in the world, aside from international tests.
The competition is composed of five teams from
Australia and five teams from New Zealand, who
compete in 13 matches each throughout a season
and then a finals series to decide the eventual
winner. As is the case with every sport, when the
rules of the game are infringed upon, the officiating
umpires must award free passes against the
infringing team. Penalties are the most common
occurrence of this in netball, and these actions can
be attributed to contact calls and obstruction calls.
Contacts can be thought of as any infringement that
involves illegal physical contact between players
such as attempting to strip an opposition player of
possession. Obstructions can be thought of as any
infringement that does not involve physical contact,
such as defending a player too closely (must be
0.9m or more away from a player whilst defending
an opposition player).

The structure of the ANZ Championship means
that Australian umpires officiate matches in
Australia and New Zealand umpires officiate
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or may not have an effect on the number of
penalties that occur.

2.METHODS

Penalty data from the ANZ Championship seasons
between 2009 and 2012 (inclusive) was collected
from the ANZ Championship website (as supplied
by Champion Data). This was split into
obstructions and contacts for each team in each
match and included locations and scores of
matches. This was a total of 260 matches - 65
matches from each season. Finals were not
included as they are usually officiated by an umpire
from each country. Four of the home and away
matches were also excluded from analysis because
they were known to either be incomplete or extend
into extra time (where it was not possible to obtain
a penalty count for the match prior to extra time
commencing). The data was then tested to see if the
penalty counts have changed dramatically over
time prior to any analysis. Following this, the data
was split into four categories.

Category Description

1 Australia vs. Australia matches,
played in Australia

2 New Zealand vs. New Zealand
matches, played in New Zealand

3 Australia vs. New Zealand matches,
played in Australia

4 New Zealand vs. Australia matches,
played in New Zealand

Table 1. Venue information and categories

This allows for comparison across the four
different types of matches that concern this study
and will form the basis of all analyses.

In some cases, thepenalty differential is used as the
value of interest, this was defined to be the humber
of penalties conceded by the away team minus the
number of penalties conceded by the home team.
Likewise, this was later split to accommodate for
contact and obstruction differentials.

3. RESULTS

An ANOVA was used to test whether the mean
difference in penalties between away and home
teams changed from 2009 to 2012. The resultant p-
value (0.895) clearly indicated no significant
difference between the years, which meant it was
possible to analyse the data as a whole. A look at
home and away penalties over time helped to
explore this.
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Home Team Penalties per match

625

60.0-

Mean Home Team Penalties
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Figure 1. Mean home penalties per match for each year

Away Team Penalties per match

62

Mean Away Team Penalties

T T T T
2009 2010 2011 012

Year

Figure 2. Mean away penalties per match for each year

Even though the numbers of penalties have
fluctuated from year to year, the home penalties
and away penalties have fluctuated approximately
evenly with each other, which explains why the
ANOVA test on differentials showed no significant
difference.

A preliminary look at penalty counts resulted in
Table 2. The first four rows show mean home team
penalties for each category, and the second four
rows show the mean away team penalties for each
category. Generally speaking the penalty means are
around the 60 or just under that mark for each side.
Underlined is the mean away team penalties in
category 4. This figure represents Australian team
penalties when playing in New Zealand and it
stands out as the discrepancy in these figures with a
mean of 68.90. Also of note is that the
corresponding home team penalties mean is 56.71,
the lowest mean of all of the categories.
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ANOVA

Difference in Penalties (away minus home)

Std.
Category N Mean Deviation
Home 1 Aus/Aus 78 59.13 11.940
Team
Penalties 2 NZ/NZ 79 59.75 11.820
(Home 3  Aus/Aus 50 58.00 13.513
Team 4 NZ/NZ 49 56.71 13.880
named  Total 256 58.64 12.585
first,
then
location
of game)
Away 1 Aus/Aus 78 60.73 12.184
Team
Penalties 2 NZ/NZ 79 58.89 13.186
(Away 3 NZ/Aus 50 59.26 9.583
Team 4 Aus/INZ 49 68.90 11.500
named  Total 256 60.33 12.424
first,
then
location
of game)

Table 2. Mean penalties per side in each category

The analysis then changed toward looking at
differentials in penalties rather than penalty counts
alone. The differential was calculated by
subtracting the home team penalties from the away
team penalties. A visual look at this can be seen in
Figure 3.

Mean Differences in Penalties for each case

r
=]
1

=
1

—

|
|

I
I

Mean Difference in Penalties (away minus home)

Venue Information

Figure 3. Mean difference in penalty counts with error bars for
each category

Again it is category 4 that appears to be the
discrepancy in this data, with a much higher mean
penalty differential than the other 3 categories. In
order to validate this difference, the means were
compared for statistically significant differences.
This included an ANOVA test (which was
significant at alpha level of 0.05) and then post-hoc
tests following that.

—

SS DF MS F Sig.
Between Groups | 5603.73 3| 186791| 6.72| <0.00
Within Groups 70017.12| 252 277.85
Total 75620.84| 255
Table 3. ANOVA test on penalty differential
) @) Difference S sig
(-J)
1 2 2.463 2661 0.791
3 0.343 3.020 0.999
4 -10.581 3.038 0.003
2 1 -2.463 2661 0.791
3 -2.121 3.012 0.895
Tukey 4 -13.044 3.031 <0.000
HSD 3 1 -0.343 3.020 0.999
2 2121 3.012 0.895
4 -10.924 3.351 0.007
4 1 10.581 3.038 0.003
2 13.044 3.031 <0.000
3 10.924 3.351 0.007

Table 4. Post-hoc tests on penalty differential

Table 3 indicatedthat at least one pair of match
types differ significantly from each other. The post-
hoc Tukey tests (in Table 4) show that category 4 is
significantly different to each of the other
categories, whilst none of the other categories are
significantly different. This further suggests that
category 4 is the discrepancy in this data set.

When the data was split into obstructions and
contacts, it gave a slightly take on the
discrepancies.

Mean Differences in Contacts for each case

o
1

=
1

:
i

Mean Difference in Contacts (away minus home)
w
1

|
el

4
Venue Information

Figure 4. Mean difference in contact counts with error
bars for each category
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Mean Differences in Obstructions for each case

Mean Difference in Obstructions (away minus home)

T
1

T T
3 4
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!

Venue Information

Figure 5. Mean difference in obstruction counts with
error bars for each category

These results indicate that more of the overall
difference in penalties can be attributed to contacts
— approximately twice as much of a difference
comes from contacts compared to obstructions.

By comparing the number of obstructions and
contacts Australian teams are penalised with in
Australia (against sides from New Zealand) versus
the same opposition in New Zealand some more
information comes to light.

Mean Contacts per game in different countries
60

50

——
——

Mean Contacts
b w o
=] =] =

| I

=
(=1
|

Aus Contacts in Aus Aus Contactsin NZ

Figure 6. Mean contact counts with error bars for
Australian sides against NZ sides
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Mean Obstructions per game in different countries
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Figure 7. Mean obstruction counts with error bars for
Australian sides against NZ

Even though the difference in contact numbers is
larger than that of obstructions, the difference in
obstruction may be more significant given that
there are much less obstruction calls in a match.
Australia a penalised with approximately 10%
more contacts when playing in New Zealand, as
shown in Figure 6. However they concede
approximately 50% more obstructions under the
same constraints (Figure 7).

4. DISCUSSION

Clearly throughout the analyses it was category 4
that was consistently the discrepancy in the data
set. This indicated matches played in New Zealand
between one side from New Zealand and one side
from Australia. Although the number of home team
penalties remained relatively consistent for each
category, the away team penalty mean for category
4 was more than 8 penalties higher than any of the
other three categories. This is curious particularly
because category 3 does not share this property
despite it also being an Australia versus New
Zealand match up. An average differential of 12
penalties (Figure 3)against the away side is a very
large number given an average count is around the
59 mark for any given match.

As expected, the ANOVA and post-hoc tests
identified that category 4 was the noticeable
discrepancy in the data set, and that it was in fact
different to each of the other three categories
significantly. In addition, none of the other
categories proved to be statistically different from
one another. Given that it has been proven than
home teams can be inadvertently advantaged by a
referee due to the home crowd, we could
reasonably expect to see this evident in each
category. However it is categories 1 and 3 that best
display this behaviour at a weak level. Interestingly
category 2 has a mean differential of penalties in
the negatives — that is to say that home teams are
on average receiving more penalties than the away
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teams. This only makes the result from category 4
more glaring.

By looking at contacts and obstructions separately,
we may be able to better understand how and/or it
is that category 4 is so unusual. Both contacts and
obstructions contribute to the overall differential in
category 4; approximately 8 penalties come from
contacts and 8 from obstructions. Again the other
three categories are approximately equal for bother
contacts and penalties and appear to differ at least
somewhat from category 4 (especially in the case
of contacts).However this difference could
potentially be somewhat misleading. It may be
more telling to look at these numbers in the context
of how many contacts and obstruction calls there
actually are throughout a match (Figures 6 and 7).
There are considerably more contacts in a match
than there are obstructions generally speaking. This
means that the increase in contact counts is less of a
leap so to speak. However given the relatively
small number of obstructions paid in matches, what
may seem like a small increase in face value is
actually almost a 50% increase in obstructions that
Australian sides concede in New Zealand against
the same opposition. Meanwhile the contacts
number increases by approximately 10%. It is
possible to look at these changes from both
perspectives, but whichever way it is observed,
category 4 is always the odd one out.

When trying to put a finger on why this is the case,
it possible to go down several routes. The most
obvious explanation is perhaps the most
controversial, in that umpires from New Zealand
are being biased against Australian sides (or for
sides from New Zealand, depending on your
perspective). This is a common complaint from
some members of the netballing community in
Australia. This could potentially be in part
attributed to crowd factors, however that would not
adequately explain why this issue is only prevalent
for that particular category of match. Even arguing
that crowds in New Zealand are more ‘hostile’
towards away teams could not explain this
discrepancy since away sides from New Zealand do
not experience this differential at all — in fact
slightly the opposite.

It’s also difficult to attribute this result entirely to a
difference in playing style from country to country.
Category 3 shows no sign of the extraordinary
results that category 4 contain — and both of these
scenarios have Australian sides playing against
sides from New Zealand.

Another popular view is that the umpiring styles
from country to country differ; but again this fails
to fully explain why categories 3 and 4 are
different. This has also been a popular belief held
in the netballing community. One possible way of
explaining this might be a combination of the

—

116

above views. Potentially the Australian game style
coupled with the New Zealand umpiring style
produces a higher number of penalties. Conversely,
the New Zealand game style may not overly
infringe on the Australian umpiring style and
therefore not draw the extra ire of the umpires.
Were this to be the case, the onus would then be on
the Australian sides to adjust better to the different
umpiring style when playing matches in New
Zealand.

It is likely that the discrepancy can be somewhat
attributed to a combination of many of these
factors, but it is unclear at this stage as to how
much each factor plays a part.

5. CONCLUSION

We have shown through looking at matches over
the course of four years in ANZ Championship
netball that there is some inconsistency in penalty
counts — specifically involving New Zealand sides
and Australian sides facing off in New Zealand.
For matches played in New Zealand, Australian
sides average approximately 12 more penalties than
their opposition. This difference is made up of
approximately 8 contacts and 4 obstructions per
match. In contrast, the other categories of matches
have an average differential of no more than 3
penalties.  Possible  explanations  for  this
discrepancy include different umpiring techniques
between countries, different playing styles between
countries crowd factors and umpiring bias. Further
research could attempt to better understand the
reasons for this discrepancy and work towards to
resolving it. Further investigation into whether the
quality of the sides involved has any bearing on
these results could also make the problem clearer.
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Abstract

In this paper, we present a final ten system for the AFL that utilises a world cup style system. We manage to
keep the finals system in a four week window, meeting existing constraints. We evaluate the system via
simulation and determine the system’s likelihoods, fairness, timely completion and balance.
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1. INTRODUCTION

The aim of this paper is to create a practical and
commercially attractive AFL Final 10 system, for
potential use in an 18 to 20 team AFL.

Currently, the AFL consists of 18 teams, with 8
teams contesting the four week finals month
concluding with the AFL Grand Final in late
September.

The growth of the AFL in recent decades, and some
issues with previous finals systems, has meant that
various finals systems have been used.

As mentioned in our other paper in these
proceedings, prior to 1972, the most common finals
system was a four team, three weeks structure. There
were twelve teams in the VFL from 1944 until 1986
inclusive.

From 1972 to 1990 inclusive a final five was used,
expanding to a final six for three years to 1993. The
Macintyre Final 8 was adopted in 1994 and used up
to and including 1999. This matched 1% and 8"
against each other in Week 1, and 2" against 7" etc.
The two lowest ranked losers would be eliminated in
the first week, meaning that individual matches’
results did not have predetermined consequences.
Since the year 2000, a new final 8 system replaced
the Macintyre Final 8. This is still in use in 2014.
The current system will not be explained in this
paper, however the probabilities of teams winning
the premiership will be referred to, as calculated by
Lowe and Clarke (2000).

2. METHODOLOGY
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The Final 10 system devised in this paper increases
the number of matches in the finals series to 11,
from the current nine-match structure. An extra two
matches are played in the second week. Recent
history of AFL/VFL finals is shown below, in terms
of number of finals teams, number of finals, and
(line) the percentage of teams contesting the finals.

As in Figure 1, teams are given home game and/or
bye privileges based on season finishing positions.

The system brings in a new element to AFL, four of
the teams contest a mini-finals within the finals in
the first two weeks. The four teams finishing from
3% to 6" play ‘within their group’ over the first half
(ie two weeks) of the finals, with the top two
rewarded with proceeding further. This is similar to
a four team World Cup group structure, where each
four team group plays round-robin, after which the
top two proceed to the round of sixteen.

Byes would be given to the fi teams at the end of the
regular season. The top team is allocated as A1, and
the team finishing second is denoted A2. These
teams are in Group A.

There are three main differences between the World
Cup groups process, and the system proposed here:

1. Due to the limitation of a four-week finals
system, only four matches rather than six
are possible for the group round-robin. That
is, each team would play two of the other

teams with Group B, rather than all three.

In the World Cup, points are allocated 3/1/0
for Win/Draw/Lose respectively, while in
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the proposed AFL Group B, points would
be 4/2/0 in keeping with the main season.

3. Inthe World Cup, teams tied on points are
separated on Goal Difference. In the AFL
system, the percentage system could also
be carried through from the main season.
Only the scores from the finals would be
used to calculate the Group B percentages.

Weeks 3 and 4 would remain as two Preliminary
Finals (in effect these are semi-finals) followed by
the Grand Final.

FINALS WEEK 1

FINALS WEEK 2

Victorian based clubs, or two interstate
clubs contesting the flag. Of course if one
team is a Melbourne team, and the other an
‘interstate’ team then this is a home-away
match with the appropriate home v away
probabilities.

FINALS WEEK 3 FINALS WEEK 4

Group 1st= A1 Bye
A 2nd= A2 Bye
Group 3rd Home 3rd Home A2/B1 Home - e
Group B: Maich 1 Group B: Maich 3 Preliminary Final 1 ] | :!"
B 5th Away 6th Away — B1/C1 Away A2/C1/B1
Grand Final, MCG
4th Home 4th Away _|A1f B2 Home A1/C2/B2
Group B: Maich 2 Group B: Maich 4 Preliminary Final 2 -
Bth Away 5th Home {B2ic2  Away
7 Home A2 Home W]
Ediminason Final 1 - Qualfying Final 1 |
10th Away C1 Away
8th Home A1 Home W
Eliminasion Final 2 - Qualfying Final 2
9th Away G2 Away

Figure 1: Devised Final 10 system

The AFL currently gives the higher ranked team the
benefit of a ‘home’ final in all finals matches except

for the Grand Final, which is played at the MCG.
The new system would continue this pattern.

Analysis of the 2013 season reveals a 57.8% win
rate for the home team where they have a home-
away advantage. This was determined by allocating
matches as either home - away (advantage to one
team) or neutral (equal chance to both teams) by
making the following assumptions:

1. A home advantage is gained only when the

home team plays in their home city/state
and doesn’t need to take a flight and the
opposing side is required to fly interstate.

2. All matches not fitting the rules in 1 above
are deemed neutral.

3. The Grand Final is played at the MCG: this

will be modeled as a neutral match for two

——

So for the purposes of modeling fairness of the
Finals 10 system, the following grounds are pooled
together as being effectively located together, with
home teams as shown in Figure 2. The remaining
boutique grounds used in 2013 were deemed to be
neutral, as both teams needed to travel from their
home states, and the stadiums were used
infrequently. For the finals system the boutique
grounds aren’t used and so don’t come into play. A
simple comparison is shown:

Week1 Week2 Week3 Week4
Current 8 4 2 2 1
Proposed 4 4 2 1
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Table 1: Comparison of games played
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|Code |Team Location 1 Location 2 | Location 3 |Location 4 |Location 5 |Location 6 |
G10_CAR Carlton MCG ES S5

G10_COL Collingwood MCG ES 55

G10_ESS Essendon MCG ES 58

G10_GEE Geelong MCG ES 55

G10_HAW Hawthorn MCG ES 55

G10_MEL Melbourne MCG ES 55

G10_NME Nth Melbourne MCG ES SS

G10_RIC Richmond MCG ES 55

G10_STK StKilda MCG ES 55

G10_WBD Western Bulldogs [MCG ES SS

G21_ADE Adelaide AS

G21_PAD Port Adelaide AS

G22_GWS GWS 5CG ANZ SK

G22_SYD Sydney SCG ANZ SK

G23_FRE Fremantle PS

G23 WCE West Coast PS

G24_BRI Brisbane G

G25_GCS Gold Coast MS

Abbreviations: ES: Etihad Stadium (Docklands), §5: Simonds Stadium (Geelong), AS: Aami Stadium (Adelaide)
SK: Skoda Stadium (Sydney), PS: Pattersons Stadium (Perth), G: Gabba (Brisbane), MS: Metricon Stadium (Carrera)

Figure 2: Pooled Grounds

Group B consists of the next four teams as ranked at
the end of the regular season. They play amongst
themselves in the first two weeks, with the top two
going through to the third week. This would be a
new feature of VFL/AFL finals, a mini-finals within
the finals much like a World Cup group where two
teams out of four succeed in going through to the
‘elimination phase’.

Here, however, each team would play two rather
than three of the other teams. These four are
awarded ‘home’ and ‘away’ fixtures in weeks one
and two according to their season ending positions —
3" is given two home matches which are against 5
and then 6™. The team finishing 6" has no home
matches in this phase, and the 4™ and 5" teams are
allocated one home and one away in the two week
round-robin as shown above.

Other combinations of fixtures in this phase would
have been possible. In the structure selected, the
match-ups of 3" v 4™ and 5™ v 6™ are avoided.

After the end of Finals Week 2, the top two ranked
teams from the group are decided, and allocated as
B1 (top) and B2 (second). How are the two Group B
winners decided and ranked? Firstly on wins/points
whereby 4 points are given for each win. Of course
any team achieving 8 points/ 2 wins will always
proceed to Week 3, while any teams not winning
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either game cannot proceed. Percentage from within
the finals after the four matches is the next separator.
If teams are still equal, then end of season points
(and then percentage) would be used. It would be
very unlikely for regular season data to be required.

3.RESULTS

The simulation procedure was as follows:

Stage 1.

Teams were allocated a number and a team code
which includes two digit number for home game
location. For example G10 is for Melbourne/Vic
based clubs, and G25 for Gold Coast. The first block
of inputs (uniform dist) provides a random end of
season ladder, which of course includes random
final 10 teams to participate in the 10 team finals.
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Team No Team Code Team name

G10_CAR

Carlton

G10_CoL

Collingwood

G10_ESS

Essendon

G10_GEE

Geelong

G10_HAW

Hawthorn

G10_MEL

Melbourne

G10_NME

Nth Melbourne

G10_RIC

Richmond

Wl |~ | |bswN e

G10_STK

StKilda

G10_WBD

Western Bulldogs

G21_ADE

Adelaide

G21_PAD

Port Adelaide

G22_GWS

GWS

G22_SYD

Sydney

G23_FRE

Fremantle

G23_WCE

West Coast

G24_BRI

Brishane

G25_GCS

Gold Coast

Top 10
Position

Team Code [Position |Team No
G22_SYD
G25_GCS
G21_ADE
G22_GWS
G10_WBD
G23_WCE
G10_MEL
G10_GEE
G10_CAR

G10_RIC

14
18
11
13
10
16

Wl |~ |u|ds|w N |-
Ol |N|a ||k |w e |-

Rk ]

10

[
[=]

Stage 2: Finals Week 1

Week 1 of the finals (four matches) are played out
with the competing teams allocated either 50%-50%
or 57.8%-42.2% depending on whether the matches
are neutral or home-away (advantage) using the
rules discussed previously.

In Figure 3, Western Bulldogs and GWS win their
Group B games. In the elimination finals Richmond
and Geelong both survive, while Melbourne and
Carlton are eliminated.
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M Group B Match 1

Ml Group 8 Match 2

M eiimination Final 1

M eimination Final 2

Home

Away

Home

Away

Home

Away

Home

Away

9th

Figure 3: Stage 2

G21_ADE

G10_WBD

G22_GWS

G23_WCE

G10_MEL

G10_RIC

G10_GEE

G10_CAR

Neutral or H-A?
1=Neutral; 2=Home_Away
G21
2
G10

G22

G23

610

610

610

610

Pr(win)  Rand()

Winner

0.578

[0:579674] G10_wao

0.422

0.578

[[034302] c22_cws

0.422

0.5

[0:637153] 10_RIC

0.5

0.5

[T0a3154] 610_6EE

0.5

Stage 3: Finals Week 2

The second week includes another four matches —
the deciding third and fourth Group B games, and
two qualifying finals which bring together the top
two teams (fresh from a bye in Week 1) and the
surviving Group C teams.

After appropriate teams are allocated into these
finals, the simulation structure is the same as for the
first week.

The two losing teams from the qualifying matches
are eliminated. In this example, as shown below,
Richmond and Geelong will be out, while Gold
Coast and Sydney will proceed further.

Neutral or H-A? Priwin) Rand()  Winner

Team Cod: 1=Neutral; 2=Home_Away Team Code
WcroupBMatch3 Home  3rd G21_ADE G21 0.578
[ 2 0.5 G21_ADE
Away  6th G23_WCE G23 0.422
WlcroupBMatch 4 Home  Sth G10_WBD G10 0.578
I 2 0.5 G10_WBD
Away  4th G22_GWS G22 0422
Ml cusiifyingFinal 1 Home  2nd 625_6C5 625 0578
[ 2 0.5 G25_GCS
Awsy  7h/10th GO_RIC G10 0.422
Ml cusiifvingFinal 2 Home  1st 6G22_SYD G22 0.578
I 2 0.5 G22_SYD
Away  Bth/oth  G10_GEE G10 0422

Figure 4:Stage 3

In matches 3 and 4 of Group B, Adelaide and
Western Bulldogs won. Therefore after all four
Group B matches, the points ladder for Group B is:
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Teams Total Points
G21_ADE
G22_GWS
G10_WBD

G23_WCE

=R

There are no more matches for these teams in the
Group B two week ‘mini-Series’, so two must
proceed and two will be eliminated. Here, Western
Bulldogs (WBD) has 8 points after winning both of
its matches. It will proceed into the preliminary
finals week. West Coast (WCE) lost both its
matches so will not proceed.

Adelaide and GWS both won one of their matches
and are equal on four points. In reality their ‘in
finals’ percentages would decide which proceeds to
Week 3. In the simulation, actual scores were not
generated, although this could be added relatively
easily. Instead, four more inputs are used to decide
percentage ranking for the Group B teams. From the
two teams in dispute, the one with the higher
percentage rank proceed, and the other is eliminated:

All other matches in the finals except for the Grand
Final would need to be decided on the match day, so
the contingency of extra time would be retained
from the current AFL finals system. Currently the
AFL’s policy for the Grand Final is the drawn
matches will be completely replayed on the
following weekend — a crowd and revenue bonanza.

Stage 4: Finals week 3, Preliminary Finals

The benefit (where team pairings aren’t neutral) of
home finals in the preliminary finals goes to the
teams from the higher group. The top two teams Al
and A2 then will always play home PFs when they
make it to Week 3, while Group B teams will get
home finals only where they are competing against
Group C teams.

In this example, it is assumed that Gold Coast versus
Western Bulldogs is played at Carrara. As the
capacity is only 25,000 there, perhaps the match
would be played in Brisbane’s Gabba (approx.
42,000 capacity) instead however, or even the MCG.

This page decides which two teams 'proceed' from Group B, and designates B1 and B2.

Week 1 Week 2
Number Match points Percentage |Aggregate |Group B
Teams Codes Match points (4/0) |{4/0) Total Points Rank for Order |outcome(Rank) [B1/B2/OUT [Team Code
3rd G21_ADE 11 0 4 4 3 4.33 3|0UT G21_ADE
4th G22_GWS 13 4 0 4 2 4.50 2|B2 G22_GWS
5th G10_WBD) 10 4 4 8 1 9.00 1|B1 G10_WBD
6th G23_WCE 16 0 0 0 4 0.25 4(0UT G23_WCE
Figure 4: Progression from Group B
Team code  Neutral or H-A? Pr (win) Winner

1=Neutral; 2=Home_Away Team Code Team No.

Bl 7-<liminary Final 1 Home  A2/B1 G25_GCS  G25 0.578

B1 plays Home only if opponent is from 7

C group. 2 0.014235|G25_GCS 18

Away B1/C1 G10_WBD G10 0.422

Bl 7 r<liminary Final 2 Home  A1/B2 G22.SYD  G22 0.5

B2 plays Home only if opponent is from "

C group. 1 0.267459 G22_SYD 14

Away B2/C2 G22_GWS G22 0.5

Figure 5: Stage 4
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However all ‘Home’ teams are assumed to be given
the benefit of home city finals up to Week 3, which
is relatively commercially practical for all teams
except GCS. For GWS playing a home final at ANZ
Stadium or the SCG, this would be treated as a home
— away game except against Sydney.

As shown in Figure 5, Gold Coast and Sydney both
won their matches and are rewarded by proceeding
to the Grand Final.

Stage 5: Grand Final

Team code

Home/Away/Neutral A2/B1/C1 G25_GCS
Match has H-A probabilities if one team is VIC, the other non-viIC.

Al1/B2/C2 G22_SYD

Grand Final

MCG, Melbourne Away/Home/Neutral

Figure 6: Stage 5

In this example, the match between GCS and SYD is
designated as neutral, both teams playing away at
the MCG. As shown on the right, the winning team
Sydney’s starting position in the finals was 2M,

3. DISCUSSION

Fairness is the main criterion that needs to be tested.
The finals system structure should reward teams for
finishing higher on the ladder by the structure of the
match pairings and the rules to decide matches
locations and therefore the possibility of home team
advantage. At the same time, to keep interest in the
series, the higher finishing teams should not be
virtual certainties to make the Grand Final. In
addition, the probabilities ideally wouldn’t change
from one finishing position to the next in too large a
step.

Previous work by Lowe and Clarke (2000) showed
that for the current AFL finals system the teams
have the following probabilities of winning the
premiership, assuming all games are 50-50 in the
first table, and in the home-away advantage model
in the second table.

Current AFL 8-team finals system

——
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Equal Probability Maodel Home ground advantage

Team Pr (Win) % Team Pr (Win) % *
1 18.75 1 20.7
2 18.75 2 20.7
3 18.75 3 18.5
4 18.75 4 18.5
5 6.25 5 5.20
6 6.25 6 5.20
7 6.25 7 3.90
8 6.25 8 3.90

* median of groups

The top four teams in the current system are given
considerably higher chance of winning the GF.

Neutral or H-A? Pr (wi- - _
1=Neutral; Winning Winning

2=Home_Away Team Code Team No. Position in 10
G25 0.5

[ 1] [0.887503]622_svp \ 14] [ 2
G22 0.5

In the home ground advantage model, the gap
between 4" and 5" chances of winning the
premiership is 13.3 percentage points.

The proposed Top 10 Finals system resulted in the
following probabilities, applying models based on
the models of Lowe and Clarke (2000).

The equal probability model assumes 50%-50%
chances in all matches for the competing teams;

Pre-finals Matches to  Pr (premiership)
position win

Group A |1st 3 0.543=0.125
2nd 3 0.503=0.125

GroupB |3rd Jord 0.543=0.125
4th 3oréd 05703 =0.125
5th Jord 0.523=0.125
6th Jord 0.543=0.125

Group C |7th 4 0.50 =0.0625
8th 4 0.504 = 0.0625
9th 4 0.574 =0.0625
10th 4 0.5%4 =0.0625

Total = 1.000

The Group B teams have a 50% chance of making it
through the two-week ‘group stage’ as there is no
home-away advantage and half of the four teams
will proceed.
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A simulation of 50,000 iterations was run to
determine probabilities with the home-away
advantage where one team travels while the other
doesn’t. The procedure was detailed previously.
Groupings of teams to factor in home-away
advantage are different to Lowe and Clarke.

The results for all teams combined were:

Ladder Pr(Win) |diff

1 15.6%
2 15.3% 0.3%
3 13.5% 1.8%
4 12.5% 1.0%
5 12.3% 0.2%
6 10.8% 1.5%
7 5.5% 5.3%
8 5.4% 0.1%
9 4.5% 0.9%
10 4.6% -0.1%

100.0%

Dividing the teams into three groups based on
location:

Type 1 teams (Victorian based): CAR, COL, ESS,
GEE, HAW, MEL, NME, RIC, STK, WBD

Type 2 teams (located in two-team cities): WCE,
FRE, ADE, PAD, SYD, GWS

Type 3 teams (single-team locations): GCS, BRI
Type 2 teams

Type 1 teams Type 3 teams

Ladder Pr(wWin) Ladder Pr(Win) Ladder Pr(Win)

1 15.2% 1 16.1% 1 16.3%
2 15.1% 2 15.6% 2 15.5%
3 13.5% 3 13.4% 3 13.9%
4 12.5% 4 12.6% 4 12.5%
5 12.3% 5 12.1% 5 12.8%
6 10.9% 6 10.7% 6 10.6%
7 5.6% 7 5.5% 7 5.1%
8 5.5% 8 5.3% 8 4.7%
9 4.7% 9 4.1% 9 4.4%
10 4.8% 10 4.4% 10 4.2%

100.0% 100.0% 100.0%

For type one and type two teams, the 10" team has a
slightly higher chance than 9" of winning the
premiership using the simulation results as shown
above. More iterations would be required to confirm
this however.

——
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4. CONCLUSIONS

A relatively fair ten-team AFL finals system within
four weeks has advantages over the current finals
system. The main ones are the extra two matches in
the second week, and the much better deal for the
fifth and sixth in particular, which have significantly
higher probabilities of winning the premiership, and
are guaranteed at least two weeks in the finals
(compared to one currently).

Also, the Final 10 system devised rewards the top
two with a week off in Week 1, whereas currently
they have little advantage over third and fourth. The
10 team system is less predictable than the current 8
team system, while also being fairer when
comparing teams relative starting positions.

Also, of course, 9" and 10™ would have some
chance in this system, compared to missing out
completely in any Final 8 system. While they would
have a low chance of winning the main prize, it’s
not unlikely they could have an impact beyond
Week 1, especially for a fast finishing team that
perhaps had early season injuries.

The simulation as run could be improved in several
ways, as already mentioned. Accuracy could be
improved, and realism could be improved in Group
B percentages for example. Also, more work could
look at changing the Group B match-ups to see how
that would affect probabilities.
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Abstract

Sports Statistics texts tend to focus on mostly introductory statistics and probability.
Those textbooks available generally are very USA sports focused, despite the
increasing availability of large sports data sets from other world sports. An invitation to
design and teach sports statistics to a group of sports psychology students, with a good
background in data analysis methodologies, provided an opportunity to explore a range
sporting data sets, including: cricket, basketball, tennis, Australian Rules Football,
soccer and rugby union.Also, to introduce statistical methods and toolsused mostly in
manufacturing (quality control)and economics (forecasting) that arebeing applied to
monitor and predict the performance of elite athletes and teams. This unique 12 week
unit integrates real examples and real data. The unit is delivered face-to-face through a
mixture of lectures (including guest speakers i.e. Champion Data Statistician) and
computer lab tutorials. Assessments involved online computer lab quizzes, journal
articles, group projects with a presentation and an examination related to all topics.
Evaluation of student feedback at the end of this unit was very positive and
encouraging, especially from those with a strong interest in sports performance.

Key Words: sports data, monitoring performance, forecasting, rankings and ratings.
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